
XL C/C++ for z/VM

User's Guide

version 1 release 2

SC09-7625-01

���

XL C/C++ for z/VM

User's Guide

version 1 release 2

SC09-7625-01

���

Note:

Before using this information and the product it supports, read the information in “Notices” on page 127.

This edition applies to version 1, release 2, modification 0 of IBM XL C/C++ for z/VM (product number 5654-A22),

and to all subsequent releases and modifications until otherwise indicated in new editions.

This edition replaces SC09-7625-00.

© Copyright International Business Machines Corporation 2003, 2008.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Figures . vii

Tables . ix

About This Document . xi

Intended Audience . xi

Conventions and Terminology . xi

How to Read Syntax Diagrams xii

Where to Find More Information xiii

How to Send Your Comments to IBM xiii

Summary of Changes . xv

SC09-7625-01, IBM XL C/C++ for z/VM, Version 1 Release 2 xv

IBM XL C/C++ for z/VM . xv

Language Environment for z/VM Upgrade xv

Program Management Binder for CMS Upgrade xv

Chapter 1. About IBM XL C/C++ for z/VM 1

Migration Considerations . 1

Differences between IBM XL C/C++ for z/VM and z/OS XL C/C++ 1

The C Language . 1

The C++ Language . 1

Common Features of the C and C++ Compilers 2

Class Library . 2

Utilities . 3

Language Environment . 3

z/VM OpenExtensions . 3

OpenExtensions Services . 3

Applications with OpenExtensions Services 4

Applications with OpenExtensions Interoperability 4

Softcopy Examples . 5

Chapter 2. C Example . 7

Example of a C Program . 7

CCNUAAM . 7

CCNUAAN . 8

Compiling, Binding, and Running the C Example 9

Non-XPLINK and XPLINK under CMS 9

Non-XPLINK and XPLINK under the OpenExtensions Shell 9

Chapter 3. C++ Examples . 11

Example of a C++ Program . 11

CCNUBRH . 11

CCNUBRC . 13

Compiling, Binding, and Running the C++ Example 15

Non-XPLINK and XPLINK under CMS 15

Non-XPLINK and XPLINK under the OpenExtensions Shell 15

Example of a C++ Template Program 16

CCNUTMP . 17

Compiling, Binding, and Running the C++ Template Example 18

Under CMS . 18

Under the OpenExtensions Shell 19

© Copyright IBM Corp. 2003, 2008 iii

||
||

||

Chapter 4. Compiler Options 21

Specifying Compiler Options . 21

Specifying Compiler Options Using #pragma options 22

Compiler Option Defaults . 23

Summary of Compiler Options 23

Descriptions of Compiler Options 23

Compiler Options Not Supported 23

Compiler Options with Operational Differences 24

Using the C Compiler Listing . 35

Using the C++ Compiler Listing 36

Chapter 5. Compiler Options under OpenExtensions 37

Specifying Compiler Options Using c89/cxx 37

c89/cxx Default Compiler Settings 37

c89 Selectable Compiler Settings 37

Format . 37

Description . 38

Feature Test Macros . 39

Chapter 6. Runtime Options 41

Specifying Runtime Options . 41

Runtime Options Using Language Environment 41

Chapter 7. Compiling a C/C++ Program 43

Invoking the XL C/C++ Compiler 43

GLOBAL Command for Using the Language Environment Library 43

Syntax of the CC EXEC . 44

Specifying the Input File . 44

Specifying Compiler Options 46

Creating Input Source Files 47

Specifying Output Files . 48

Valid Input/Output File Types 49

Using Include Files . 49

Determining If filename Is In Absolute Form 52

Using LSEARCH and SEARCH 53

Search Sequences for Include Files 54

With the NOOE option in effect 54

With the OE option in effect 55

Chapter 8. Binding and Running a C/C++ Program 57

Library Routine Considerations 57

Creating an Executable Program 58

Language Environment Sidedeck Files and TXTLIBs 59

CMOD Options . 59

Examples . 61

Using the LOAD and GENMOD Commands 62

Using the BIND Command . 63

Using the LKED Command . 64

Using FILEDEF to Define Input and Output Files 64

Preparing a Reentrant Program 65

Linking Modules for Interlanguage Calls 65

Running a Program . 66

Making the Runtime Libraries Available for Execution 66

Making the Language Environment Library Available for VM/CMS 66

Search Sequence for Library Files 66

Specifying Runtime Options . 66

iv XL C/C++ for z/VM: User's Guide

Message Handling . 67

Chapter 9. Compiling a C/C++ Program under OpenExtensions 69

Compiling with c89/cxx . 69

Compiler Selection . 70

Compiling and Building in One Step with c89/cxx 70

Using the make Utility . 71

Chapter 10. Binding and Running a C/C++ Program under OpenExtensions 73

Using the c89 Utility to Bind and Create Executable Files 73

c89 Binder Options . 73

Binder Options . 74

Specifying Runtime Options under OpenExtensions 74

Running under OpenExtensions 74

OpenExtensions Application Program Environments 74

Placing a CMS Application Program Load Module in the File System 74

Running a CMS Module from the OpenExtensions Shell 75

Running an OpenExtensions XL C/C++ Application Executable File from the

OpenExtensions Shell . 75

Chapter 11. Object Library Utility 77

Creating an Object Library under VM/CMS 77

LINKLOAD EXEC . 79

Object Library Utility Map . 80

Chapter 12. Filter Utility . 87

CXXFILT Options . 88

SYMMAP | NOSYMMAP . 88

SIDEBYSIDE | NOSIDEBYSIDE 88

WIDTH(width) | NOWIDTH 88

REGULARNAME | NOREGULARNAME 88

CLASSNAME | NOCLASSNAME 88

SPECIALNAME | NOSPECIALNAME 89

Unknown Type of Name . 89

Running CXXFILT under VM/CMS 89

Chapter 13. DSECT Conversion Utility 91

DSECT Utility Options . 92

SECT . 92

BITF0XL | NOBITF0XL . 92

COMMENT | NOCOMMENT 93

DEFSUB | NODEFSUB . 94

EQUATE | NOEQUATE . 94

HDRSKIP | NOHDRSKIP . 96

INDENT | NOINDENT . 97

LOCALE | NOLOCALE . 97

LOWERCASE | NOLOWERCASE 97

OPTFILE | NOOPTFILE . 97

PPCOND | NOPPCOND . 98

SEQUENCE | NOSEQUENCE 98

UNNAMED | NOUNNAMED 98

OUTPUT . 98

RECFM . 99

LRECL . 99

BLKSIZE . 99

Generation of C Structures . 99

Contents v

Chapter 14. Code Set and Locale Utilities 103

Code Set Conversion Utilities 103

iconv Utility . 103

genxlt Utility . 104

localedef Utility . 106

Chapter 15. OpenExtensions ar and make Utlities 109

OpenExtensions Archive Libraries 109

Creating Archive Libraries . 110

Creating Makefiles . 110

Appendix A. IBM-Supplied EXECs 111

Appendix B. XL C/C++ Compiler Return Codes and Messages 113

Appendix C. EXEC Error Messages 115

Appendix D. Runtime Error Messages and Return Codes 117

perror Messages . 117

XL C/C++ Runtime Return Codes 117

Appendix E. Utility Messages 119

DSECT Utility Messages . 119

Return Codes . 119

Messages . 119

Appendix F. Layout of the Events File 123

FILEID Field . 123

FILEEND Field . 124

ERROR Field . 124

Notices . 127

Programming Interface Information 128

Trademarks . 129

Glossary . 131

Bibliography . 159

IBM XL C/C++ for z/VM Publications 159

z/OS XL C/C++ Publications 159

Other IBM C/C++ Publications 159

IBM Debug Tool . 159

z/VM Publications . 159

Where to Get z/VM Information 159

z/VM Base Library . 159

Publications for z/VM Optional Features 161

Publications for Associated IBM Software Products and Hardware Features 161

Index . 163

vi XL C/C++ for z/VM: User's Guide

Figures

 1. Celsius to Fahrenheit Conversion . 7

 2. User #include File for Conversion Program . 8

 3. Commands to Compile, Bind, and Run a C Program under VM/CMS 9

 4. Commands to Compile, Bind, and Run a C Program under OpenExtensions 10

 5. Header File for the Biorhythm Example . 11

 6. z/OS C++ Biorhythm Example Program . 13

 7. Commands to Compile, Bind, and Run a C++ Program under CMS 15

 8. Commands to Compile, Bind, and Run a C++ Program under OpenExtensions 16

 9. C++ Template Program . 17

10. Commands to Compile, Bind, and Run a C++ Template Program under CMS 19

11. Commands to Compile, Bind, and Run a C++ Template Program under OpenExtensions 19

12. Specifying a CMS Record Input File under VM/CMS (Example 1) 45

13. Specifying a CMS Record Input File under VM/CMS (Example 2) 45

14. Specifying a BFS Input File under VM/CMS (Example 1) 46

15. Specifying a BFS Input File under VM/CMS (Example 2) 46

16. Specifying Compiler Options under VM/CMS (Example 1) 47

17. Specifying Compiler Options under VM/CMS (Example 2) 47

18. Specifying Compiler Options for BFS Files . 47

19. Testing If filename Is In Absolute Form . 52

20. Determining If LSEARCH/SEARCH opt Is BFS Path 53

21. CMS Commands to Bind and Run a C Program 57

22. CMS Commands to Bind and Run a C++ Program 57

23. Example 1 - Using the CMOD EXEC . 61

24. Example 2 - Using the CMOD EXEC . 61

25. Example 3 - Using the CMOD EXEC . 62

26. Example 4 - Using the CMOD EXEC . 62

27. Using the LOAD and GENMOD commands . 63

28. Running under CMS . 67

29. Running the DSECT Utility under CMS . 91

30. SIMPLE C . 123

31. ERR H . 123

32. Sample SYSEVENT file . 123

© Copyright IBM Corp. 2003, 2008 vii

viii XL C/C++ for z/VM: User's Guide

Tables

 1. c89 Option and Corresponding Compiler Option 39

 2. Default CMS File Types and BFS Suffixes for Output Files 48

 3. Valid Combinations of Source and Output File Types 49

 4. Include Directive and Resulting File Names . 51

 5. Examples of Search Order for OpenExtensions 56

 6. CMOD options . 59

 7. DSECT Utility Options, Abbreviations, and IBM-Supplied Defaults 92

 8. Return Codes from the DSECT Utility . 119

 9. Explanation of the FILEID Field Layout . 124

10. Explanation of the FILEEND Field Layout . 124

11. Explanation of the ERROR Field Layout . 124

© Copyright IBM Corp. 2003, 2008 ix

x XL C/C++ for z/VM: User's Guide

About This Document

This document provides information about using IBM® XL C/C++ for z/VM to

implement (compile, bind, and run) C and C++ programs with Language

Environment®. It contains guidelines for preparing C and C++ programs to run

under z/VM®.

This document includes information about the following topics:

v Introduction to IBM XL C/C++ for z/VM

v Differences between IBM XL C/C++ for z/VM and z/OS® XL C/C++

v How to compile, bind, and run a C/C++ program with IBM XL C/C++ for z/VM in

the CMS environment of z/VM

v How to compile, bind, and run a C/C++ program with IBM XL C/C++ for z/VM in

the z/VM OpenExtensions™ environment

Intended Audience

This information is intended for programmers who want to write C and C++

applications on the z/VM platform. To use this information, you must have a working

knowledge of the C and C++ programming languages, Language Environment for

z/VM, and z/VM OpenExtensions.

Conventions and Terminology

Throughout this document, the following conventions are used:

v XL C/C++ is used to represent IBM XL C/C++ for z/VM.

v z/VM refers to z/VM V5.4 or later.

v VM/CMS is used to represent the CMS environment of z/VM.

v Language Environment is used to represent Language Environment for z/VM.

v OpenExtensions is used to represent the z/VM OpenExtensions environment.

The term filename is used to refer to both files in general, regardless of the specific

file system in which they reside, and also more specifically to refer to the name

component of a minidisk or shared file system file identifier. The intended usage

should be clear from the context.

It is often necessary, however, to make a distinction between files that reside in the

byte file system, and those that reside on minidisks or in the shared file system (but

not in the byte file system). For convenience, the former will be referred to as BFS

files, and the latter as CMS files.

The term ddname is used to refer to a data definition name. The relation of a

ddname to one or more CMS files is achieved by using the FILEDEF command or

for a BFS file by using the OPENVM PATHDEF CREATE command.

The term FILEDEF is used to refer to the data definition created by the use of the

FILEDEF command.

The term PATHDEF is used to refer to the data definition created by the use of the

OPENVM PATHDEF CREATE command.

© Copyright IBM Corp. 2003, 2008 xi

|

|

The term program module is defined as the output of the binder. It is a collective

term for program object and load module.

How to Read Syntax Diagrams

This document describes the syntax for commands, directives, and statements,

using the following structure:

v Read the syntax diagrams from left to right, from top to bottom, following the path

of the line.

A double right-arrowhead indicates the beginning of a command, directive, or

statement. A single right-arrowhead indicates that it is continued on the next line.

(In the following diagrams, "statement" represents a command, directive, or

statement).

��──statement───�

The following indicates a continuation; the opposing arrowheads indicate the end

of a command, directive, or statement.

�──statement──��

Diagrams of syntactical units other than complete commands, directives, or

statements look like this:

�──statement──�

v Required items are on the horizontal line (the main path).

�� statement required_item ��

v Optional items are below the main path.

�� statement

optional_item
 ��

v Default items are above the main path.

��
 default_item

statement

��

v If you can choose from two or more items, they are vertical in a stack.

If you must choose one of the items, one item of the stack is on the main path.

�� statement required_choice1

required_choice2
 ��

If choosing one of the items is optional, the entire stack is below the main path.

�� statement

optional_choice1

optional_choice2

 ��

v An arrow that returns to the left above the main line indicates an item that you

can repeat.

��

�

statement

repeatable_item

��

xii XL C/C++ for z/VM: User's Guide

A repeat arrow above a stack indicates that you can make more than one choice

from the stacked items, or repeat a single choice.

v Keywords are not italicized, and should be entered exactly as shown. You must

spell keywords exactly as shown in the syntax diagram. Variables are in italics (in

hardcopy) and lowercase letters for example, filename). They represent

user-supplied names or values.

v If the syntax diagram shows punctuation marks, parentheses, arithmetic

operators, or other nonalphanumeric characters, you must enter them as part of

the syntax.

Note: You should include at least one blank space between tokens unless

otherwise specified.

Where to Find More Information

This document is intended to be used in conjunction with the following documents:

v z/OS XL C/C++ documents (included in the IBM XL C/C++ for z/VM library)

v Other IBM C/C++ programming documents (included in the IBM XL C/C++ for

z/VM library)

v z/VM and z/OS Language Environment documents (included in the z/VM library)

v z/VM OpenExtensions documents (included in the z/VM library)

v z/VM and z/OS Program Management Binder documents (included in the z/VM

library)

For more information, see “Bibliography” on page 159.

Links to Other Online Documents

If you are viewing the Adobe® Portable Document Format (PDF) version of this

document, it may contain links to other documents. A link to another document

is based on the name of the requested PDF file. The name of the PDF file for

an IBM document is unique and identifies the edition. The links provided in

this document are for the editions (PDF names) that were current when the

PDF file for this document was generated. However, newer editions of some

documents (with different PDF names) may exist. A link from this document to

another document works only when both documents reside in the same

directory.

How to Send Your Comments to IBM

IBM welcomes your comments. You can use any of the following methods:

v Complete and mail the Readers’ Comments form (if one is provided at the back

of this document) or send your comments to the following address:

IBM Corporation

MHVRCFS, Mail Station P181

2455 South Road

Poughkeepsie, New York 12601-5400

U.S.A.

v Send your comments by FAX:

– United States and Canada: 1-845-432-9405

– Other Countries: +1 845 432 9405

About This Document xiii

v Send your comments by electronic mail to one of the following addresses:

– Internet: mhvrcfs@us.ibm.com

– IBMLink™ (US customers only): IBMUSM10(MHVRCFS)

Be sure to include the following in your comment or note:

v Title and complete publication number of the document

v Page number, section title, or topic you are commenting on

If you would like a reply, be sure to also include your name, postal or e-mail

address, telephone number, or FAX number.

When you send information to IBM, you grant IBM a nonexclusive right to use or

distribute the information in any way it believes appropriate without incurring any

obligation to you.

xiv XL C/C++ for z/VM: User's Guide

Summary of Changes

This book contains terminology, maintenance, and editorial changes. Technical

changes or additions to the text and illustrations are indicated by a vertical line to

the left of the change.

SC09-7625-01, IBM XL C/C++ for z/VM, Version 1 Release 2

This edition supports the general availability of IBM XL C/C++ for z/VM, V1.2, and

z/VM V5.4.

IBM XL C/C++ for z/VM

IBM XL C/C++ for z/VM, V1.2, is a z/VM-enabled version of z/OS V1.9 XL C/C++. It

is an upgrade to and replacement for IBM C/C++ for z/VM, V1.1, and includes

support for new and enhanced compiler features and options.

Language Environment for z/VM Upgrade

The runtime libraries included with Language Environment for z/VM (function level

540, provided with z/VM V5.4) have been upgraded to the same level shipped with

z/OS V1.9 Language Environment.

Program Management Binder for CMS Upgrade

The Program Management Binder for CMS included with z/VM V5.4 has been

upgraded to the same level shipped with z/OS V1.9.

© Copyright IBM Corp. 2003, 2008 xv

xvi XL C/C++ for z/VM: User's Guide

Chapter 1. About IBM XL C/C++ for z/VM

IBM XL C/C++ for z/VM is the language-centered C/C++ application development

environment on the z/VM platform. It is a z/VM-enabled version of z/OS V1.9 XL

C/C++. IBM XL C/C++ for z/VM includes a C/C++ compiler component (referred to

as the XL C/C++ compiler) and some C/C++ application development utilities.

Migration Considerations

For information on migrating from an earlier IBM C or C/C++ compiler, see the z/OS

V1.9 edition of z/OS: XL C/C++ Compiler and Run-Time Migration Guide for the

Application Programmer, GC09-4913-05:

v For IBM AD/Cycle® C/370™ V1.2 and IBM C for VM/ESA V3.1, see Part 2,

“Migration of pre-OS/390 C/C++ applications to z/OS V1R9 XL C/C++”.

Note that the IBM C for VM/ESA V3.1 compiler is equivalent to the IBM C/C++

for MVS/ESA V3.1 compiler.

v For IBM C/C++ for z/VM V1.1, see Part 4, “Migration of earlier z/OS C/C++

applications to z/OS V1R9 XL C/C++”.

Note that the IBM C/C++ for z/VM V1.1 compiler is equivalent to the IBM z/OS

V1.2 C/C++ compiler.

Differences between IBM XL C/C++ for z/VM and z/OS XL C/C++

The following z/OS XL C/C++ compiler features are not supported in IBM XL C/C++

for z/VM:

v Interprocedural Analysis

The associated compiler option is IPA.

v ASCII support

The associated compiler option is ASCII.

v Host Performance Analyzer

v Assembler code generation

The associated compiler options are METAL, GENASM, PROLOG, and EPILOG.

For the complete list of unsupported compiler options, see “Compiler Options Not

Supported” on page 23.

Some supported z/OS XL C/C++ compiler options operate differently in IBM XL

C/C++ for z/VM. See “Compiler Options with Operational Differences” on page 24.

The C Language

The C language is a general-purpose, function-oriented programming language that

allows a programmer to create applications quickly and easily. C provides high-level

control statements and data types as do other structured programming languages,

and it also provides many of the benefits of a low-level language.

The C++ Language

The C++ language is based on the C language, but incorporates support for

object-oriented concepts. For a detailed description of the differences between C++

and C, see z/OS: XL C/C++ Language Reference.

© Copyright IBM Corp. 2003, 2008 1

|

|
|
|
|

|

|
|
|

|
|

|
|

|
|

|
|

|

|

The C++ language introduces classes, which are user-defined data types that may

contain data definitions and function definitions. You can use classes from

established class libraries, develop your own classes, or derive new classes from

existing classes by adding data descriptions and functions. New classes can inherit

properties from one or more classes. Not only do classes describe the data types

and functions available, but they can also hide (encapsulate) the implementation

details from user programs. An object is an instance of a class.

The C++ language also provides templates and other features that include access

control to data and functions, and better type checking and exception handling. It

also supports polymorphism and the overloading of operators.

Common Features of the C and C++ Compilers

The C and C++ compilers offer many features to help your work:

v Optimization support.

The OPTIMIZE compiler option instructs the compiler to optimize the machine

instructions it generates to produce faster-running object code to improve

application performance at run time.

v Dynamic link libraries (DLLs) to share parts among applications or parts of

applications , and dynamically link to exported variables and functions at run

time.

DLLs allow a function reference or a variable reference in one executable to use

a definition located in another executable at run time. You can use both

load-on-reference and load-on-demand DLLs. When your program refers to a

function or variable which resides in a DLL, XL C/C++ generates code to load the

DLL and access the functions and variables within it. This is called

load-on-reference. Alternatively, your program can use C library functions to load

a DLL and look up the address of functions and variables within it. This is called

load-on-demand. Your application code explicitly controls load-on-demand DLLs

at the source level.

You can use DLLs to split applications into smaller modules and improve system

memory usage. DLLs also offer more flexibility for building, packaging, and

redistributing applications.

v Full program reentrancy.

v Locale-based internationalization support derived from the IEEE POSIX

1003.2-1992 standard. Also derived from the X/Open CAE Specification, System

Interface Definitions, Issue 4 and Issue 4 Version 2. This allows programmers to

use locales to specify language/country characteristics for their applications.

v Year 2000 support

v Support for the Euro currency.

Class Library

IBM XL C/C++ for z/VM uses the following thread-safe class library:

v Standard C++ Library, including the Standard Template Library (STL), and other

library features of Programming languages - C++ (ISO/IEC 14882:1998) and

Programming languages - C++ (ISO/IEC 14882:2003(E))

The Standard C++ Library includes the following:

v Standard C++ I/O Stream Library for performing input and output (I/O) operations

v Standard C++ Complex Mathematics Library for manipulating complex numbers

2 XL C/C++ for z/VM: User's Guide

|

|
|
|

v Standard Template Library (STL) which is composed of C++ template-based

algorithms, container classes, iterators, localization objects, and the string class

Utilities

IBM XL C/C++ for z/VM provides the following utilities:

v The CXXFILT utility to map C++ mangled names to the original source.

v The DSECT Conversion Utility to convert descriptive assembler DSECTs into

C/C++ data structures.

v The localedef utility to read the locale definition file and produce a locale object

that the locale-specific library functions can use.

Language Environment

IBM XL C/C++ for z/VM exploits the runtime library and common library of base

routines available with z/VM and the C/C++ Language Environment for z/VM

(referred to as Language Environment in this document).

Language Environment establishes a common runtime environment and common

runtime services for language products, user programs, and other products.

The common execution environment is made up of data items and services

performed by library routines available to a particular application running in the

environment. The services that Language Environment can provide to your

application include:

v Services that satisfy basic requirements common to most applications. These

include support for the initialization and termination of applications, allocation of

storage, support for interlanguage communication (ILC) and condition handling.

v Extended services often needed by applications. These functions are contained

within a library of callable routines, and include interfaces to operating system

functions and a variety of other commonly used functions.

v Runtime options that help the execution, performance tuning, performance, and

diagnosis of your application.

v Access to operating system services. OpenExtensions services are available

through the XL C/C++ language bindings.

v Access to language-specific library routines, such as the XL C/C++ functions.

z/VM OpenExtensions

z/VM OpenExtensions (referred to as OpenExtensions in this document) provides

capabilities under z/VM to make it easier to implement or port applications in an

open, distributed environment.

OpenExtensions Services

OpenExtensions services are available to XL C/C++ application programs through

the C language bindings available with Language Environment.

Together, OpenExtensions, Language Environment, and XL C/C++ provide an

application programming interface that supports industry standards.

Support for POSIX and UNIX®-like interfaces includes:

v OpenExtensions services that include C-language programming interfaces

defined by the IEEE POSIX 1003.1 standard (although the fork() function is only

Chapter 1. About IBM XL C/C++ for z/VM 3

partially implemented) and subsets of the draft 1003.1a and 1003.1c standards,

as well as OpenExtensions-unique extensions

v OpenExtensions shell and utilities, which provide a UNIX-like user interface and

an application development environment for creating XL C/C++ programs for

OpenExtensions, including the following utilities:

c89 Compile and link-edit XL C/C++ applications

make Software build and maintenance tool

ar Create and maintain library archives

v Byte file system (BFS), which provides the POSIX file system

This support offers:

v Program portability (with support for POSIX.1 and POSIX.1a) across multivendor

operating systems

v A byte file system (BFS) in z/VM (with support for POSIX.1) including access to

data in either CMS record files or the BFS

v A UNIX-like user interface (with support for POSIX.2) including access to

services provided through the OpenExtensions shell and utilities

v Application threads (with support for a subset of POSIX.1c)

v OpenExtensions extensions which provide z/VM-specific support beyond the

defined standards

This support is integrated with z/VM and Language Environment for use by both

existing VM applications and for new OpenExtensions applications.

Application developers familiar with UNIX-like environments will find the

OpenExtensions shell to be a familiar C application development environment.

Those familiar with existing VM development environments may find that the

OpenExtensions environment can enhance their productivity. For more information

about the OpenExtensions shell and utilities, see z/VM: OpenExtensions User’s

Guide.

Applications with OpenExtensions Services

To make use of OpenExtensions services, an XL C/C++ program must be an

OpenExtensions POSIX XL C/C++ program with Language Environment runtime

option POSIX(ON), or it must use the interoperability support for OpenExtensions.

(See “Applications with OpenExtensions Interoperability.”)

An XL C/C++ program can make use of OpenExtensions services in one of the

following ways:

v The program is invoked from another program, or from the OpenExtensions shell,

using spawn() or one of the exec functions.

v The program is invoked using the POSIX system() call.

v The program is invoked from the CMS command line with the POSIX(ON)

override option or through the OPENVM RUN command.

Functions with dependencies on the OpenExtensions kernel, such as spawn(), or

the threading functions, such as pthread_create() are strictly limited to use within

the OpenExtensions POSIX environment.

Applications with OpenExtensions Interoperability

OpenExtensions interoperability is used to describe the fact that:

4 XL C/C++ for z/VM: User's Guide

v OpenExtensions applications running under POSIX(ON) can access traditional

VM services and data.

v Traditional VM applications running under POSIX(OFF) can access the

OpenExtensions services that permit access to BFS data.

For example, for functions such as fopen() and freopen(), the following statement

will open a BFS file named parts.instock:

 fopen("./parts.instock","r")

The next statement will open a CMS record file named PARTS INSTOCK:

 fopen("//parts.instock","r")

Changing the runtime option POSIX(OFF) to POSIX(ON) will affect the environment

in which these functions execute. For example, the following statement will open the

BFS file named, if POSIX(ON) is in effect, and will open the CMS record file if

POSIX(OFF) is in effect:

 fopen("parts.instock","r")

Some of the C language functions that use OpenExtensions services can be

invoked from applications running in the non-POSIX CMS environment, as specified

with the runtime option POSIX(OFF).

For example, the following statement will open a BFS file named parts.instock

whether the application is running under POSIX(OFF) or POSIX(ON):

 open("parts.instock",O_RDONLY)

For more information on the C language functions available under the

OpenExtensions environment that can be invoked by applications running in the

non-POSIX VM environment, see XL C/C++ for z/VM: Runtime Library Reference.

Softcopy Examples

Most of the larger examples in this document and in the following documents are

available in machine-readable form:

v z/OS: XL C/C++ Language Reference

v z/OS: XL C/C++ Programming Guide

In the following documents, a label on an example indicates that the example is

distributed in softcopy. The label is a file name on the IBM XL C/C++ for z/VM

product disk. The labels have the form CCNxyyy or CLBxyyy, where x refers to a

publication:

v R and X refer to z/OS: XL C/C++ Language Reference

v G refers to z/OS: XL C/C++ Programming Guide

v U refers to XL C/C++ for z/VM: User’s Guide

Chapter 1. About IBM XL C/C++ for z/VM 5

6 XL C/C++ for z/VM: User's Guide

Chapter 2. C Example

This chapter contains an example of the basic steps for compiling, binding, and

running a C program.

If you have not yet compiled an XL C/C++ program or read the other chapters in

this book, some concepts in this chapter may be unfamiliar. This chapter outlines

the steps to compile, bind, and run your program under VM/CMS. Refer to relevant

sections of the book for clarification as you read the examples of compiling, binding

and running.

Example of a C Program

The following example shows a simple program that converts temperatures in

Celsius to Fahrenheit. You can either enter the temperatures on the command line

or be prompted for the temperature.

In this example, the main program calls the convert function to perform the

conversion of the Celsius temperature to a Fahrenheit temperature and to print the

result.

CCNUAAM

#include <stdio.h> �1�

#include "ccnuaan.h" �2�

void convert(double); �3�

int main(int argc, char **argv) �4�

{

 double c_temp; �5�

 if (argc == 1) { /* get Celsius value from stdin */

 int ch;

 printf("Enter Celsius temperature: \n"); �6�

 if (scanf("%f", &c_temp) != 1) {

 printf("You must enter a valid temperature\n");

 }

 else {

 convert(c_temp); �7�

 }

 }

Figure 1. Celsius to Fahrenheit Conversion (Part 1 of 2)

© Copyright IBM Corp. 2003, 2008 7

CCNUAAN

�1� This preprocessor directive includes the system file that contains the

declarations of standard library functions, such as the printf() function

used by this program.

 The compiler searches for the file named STDIO H or for the member

STDIO of the VM/CMS MACLIBs, depending on the options that are set.

For a description of the file modes used in the search, see “Search

Sequences for Include Files” on page 54.

�2� This preprocessor directive includes a user file that defines constants that

are used by the program.

 The compiler searches for a file called CCNUAAN. See “Search Sequences for

Include Files” on page 54 for a description of the file modes used in the

search.

If the compiler cannot locate the file in the user libraries, the system

libraries are searched.

�3� This is a function prototype declaration. This statement declares convert()

as an external function having one parameter.

�4� The program begins execution at this entry point.

�5� This is the automatic (local) data definition to main().

�6� This printf() statement is a call to a C library function that allows you to

 else { /* convert the command-line arguments to Fahrenheit */

 int i;

 for (i = 1; i < argc; ++i) {

 if (sscanf(argviÙ, "%f", &c_temp) != 1)

 printf("%s is not a valid temperature\n",argviÙ);

 else

 convert(c_temp); �7�

 }

 }

}

void convert(double c_temp) { �8�

 double f_temp = (c_temp * CONV + OFFSET);

 printf("%5.2f Celsius is %5.2f Fahrenheit\n",c_temp, f_temp);

}

Figure 1. Celsius to Fahrenheit Conversion (Part 2 of 2)

/**

 * User include file: ccnuaan.h * �9�

 **/

#define CONV (9./5.)

#define OFFSET 32

Figure 2. User #include File for Conversion Program

8 XL C/C++ for z/VM: User's Guide

format your output and print it on the standard output device. The printf()

function is declared in the C standard I/O header file stdio h included at

the beginning of the program.

�7� This statement contains a call to the function convert(). It was declared

earlier in the program as receiving one double value, and not returning a

value.

�8� This is a function definition. In this example, the declaration for this function

appears immediately before the definition of the main() function. The C

code for the function is in the same file as the code for the main() function.

�9� This is the user include file containing the definitions for CONV and OFFSET

 If you need more details on the constructs of the C language, see z/OS: XL C/C++

Language Reference or XL C/C++ for z/VM: Runtime Library Reference.

Compiling, Binding, and Running the C Example

In general, you can compile, bind, and run C programs under CMS or the

OpenExtensions shell. For more information, see Chapter 7, “Compiling a C/C++

Program,” on page 43 and Chapter 8, “Binding and Running a C/C++ Program,” on

page 57.

Non-XPLINK and XPLINK under CMS

If the sample C program (CCNUAAM) was stored in CCNUAAM C L, and the sample

include file (CCNUAAN) was stored in CCNUAAN H L, the following set of commands

would compile, bind, and run the source code, using the Language Environment:

�1� Makes the library available to the compiler.

�2� Compiles CCNUAAM C L and stores the object module in CCNUAAM

TEXT A.

�3� Using CCNUAAM TEXT A, created by the CC EXEC, generates an

executable module called CCNUAAM MODULE using default options.

�4� Makes the runtime library available to the executable module.

�5� Runs CCNUAAM MODULE A using default options.

Non-XPLINK and XPLINK under the OpenExtensions Shell

If the sample C program (CCNUAAM) was stored in ./ccnuaam.c, and the sample

include file (CCNUAAN) was stored in ./ccnuaan.h, the following set of commands

would compile, bind, and run the source code, using the Language Environment:

GLOBAL LOADLIB SCEERUN �1�

CC CCNUAAM C L �2�

-- or, for XPLINK --

CC CCNUAAM C L (XPLINK �2�

CMOD CCNUAAM �3�

-- or, for XPLINK --

CMOD CCNUAAM (XPLINK �3�

GLOBAL LOADLIB SCEERUN �4�

CCNUAAM �5�

Figure 3. Commands to Compile, Bind, and Run a C Program under VM/CMS

Chapter 2. C Example 9

Note: In this example, the current working directory is used, so make sure that you

are in the directory you want to use. Use the pwd command to display the

current working directory, the mkdir command to create a new directory, and

the cd command to change directories.

�1� Compiles and binds ccnuaam.c, and generates an executable module

called conv.

�2� Makes the runtime library available to the executable module.

�3� Runs conv using default options.

c89 -o //conv.module ccnuaam.c �1�

-- or, for XPLINK --

c89 -o //conv.module -Wc,xplink -Wb,x ccnuaam.c �1�

cms global loadlib sceerun �2�

conv �3�

Figure 4. Commands to Compile, Bind, and Run a C Program under OpenExtensions

10 XL C/C++ for z/VM: User's Guide

|

Chapter 3. C++ Examples

This chapter contains two examples that show the basic steps for compiling,

binding, and running a C++ program.

If you have not yet compiled a XL C/C++ program or read the other chapters in this

book, some concepts in this chapter may be unfamiliar. This chapter outlines the

steps to compile, bind, and run your program under VM/CMS. Refer to relevant

sections of the book for clarification as you read the examples of compiling, linking

and running.

Example of a C++ Program

The following example shows a simple C++ program that prompts you to enter a

birth date. The program output is the corresponding biorhythm chart.

The program is written in object-oriented fashion. A class that is called BioRhythm is

defined. It contains an object birthDate of class BirthDate, which is derived from

the class Date. An object that is called bio of the class BioRhythm is declared.

The example contains 2 files. File CCNUBRH contains the classes that are used in the

main program. File CCNUBRC contains the remaining source code.

If you need more details on the constructs of the C++ language, see z/OS: XL

C/C++ Language Reference or XL C/C++ for z/VM: Runtime Library Reference.

CCNUBRH

//

// Sample Program: Biorhythm

// Description : Calculates biorhythm based on the current

// system date and birth date entered

//

// File 1 of 2-other file is CCNUBRC

class Date {

 public:

 Date();

 int DaysSince(const char *date);

 protected:

 int curYear, curDay;

 static const int dateLen = 10;

 static const int numMonths = 12;

 static const int numDays[];

};

Figure 5. Header File for the Biorhythm Example (Part 1 of 2)

© Copyright IBM Corp. 2003, 2008 11

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

class BirthDate : public Date {

 public:

 BirthDate();

 BirthDate(const char *birthText);

 int DaysOld() { return(DaysSince(text)); }

 private:

 char text[Date::dateLen+1];

};

class BioRhythm {

 public:

 BioRhythm(char *birthText) : birthDate(birthText) {

 age = birthDate.DaysOld();

 }

 BioRhythm() : birthDate() {

 age = birthDate.DaysOld();

 }

 ~BioRhythm() {}

 int AgeInDays() {

 return(age);

 }

 double Physical() {

 return(Cycle(pCycle));

 }

 double Emotional() {

 return(Cycle(eCycle));

 }

 double Intellectual() {

 return(Cycle(iCycle));

 }

 int ok() {

 return(age >= 0);

 }

 private:

 int age;

 double Cycle(int phase) {

 return(sin(fmod((double)age, (double)phase) / phase * M_2PI));

 }

 BirthDate birthDate;

 static const int pCycle=23; // Physical cycle - 23 days

 static const int eCycle=28; // Emotional cycle - 28 days

 static const int iCycle=33; // Intellectual cycle - 33 days

};

Figure 5. Header File for the Biorhythm Example (Part 2 of 2)

12 XL C/C++ for z/VM: User's Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

CCNUBRC

//

// Sample Program: Biorhythm

// Description : Calculates biorhythm based on the current

// system date and birth date entered

//

// File 2 of 2-other file is CCNUBRH

#include <stdio.h>

#include <string.h>

#include <math.h>

#include <time.h>

#include <iostream>

#include <iomanip>

#include "ccnubrh.h" //BioRhythm class and Date class

using namespace std;

static ostream& operator << (ostream&, BioRhythm&);

int main(void) {

 BioRhythm bio;

 int code;

 if (!bio.ok()) {

 cerr << "Error in birthdate specification - format is yyyy/mm/dd";

 code = 8;

 }

 else {

 cout << bio; // write out birthdate for bio

 code = 0;

 }

 return(code);

}

const int Date::dateLen ;

const int Date::numMonths;

const int Date::numDays[Date::numMonths] = {

 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31

 };

const int BioRhythm::pCycle;

const int BioRhythm::eCycle;

const int BioRhythm::iCycle;

ostream& operator<<(ostream& os, BioRhythm& bio) {

 os << "Total Days : " << bio.AgeInDays() << "\n";

 os << "Physical : " << bio.Physical() << "\n";

 os << "Emotional : " << bio.Emotional() << "\n";

 os << "Intellectual: " << bio.Intellectual() << "\n";

return(os);

}

Figure 6. z/OS C++ Biorhythm Example Program (Part 1 of 3)

Chapter 3. C++ Examples 13

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

Date::Date() {

 time_t lTime;

 struct tm *newTime;

 time(&lTime);

 newTime = localtime(&lTime);

 cout << "local time is " << asctime(newTime) << endl;

 curYear = newTime->tm_year + 1900;

 curDay = newTime->tm_yday + 1;

}

BirthDate::BirthDate(const char *birthText) {

 strcpy(text, birthText);

}

BirthDate::BirthDate() {

 cout << "Please enter your birthdate in the form yyyy/mm/dd\n";

 cin >> setw(dateLen+1) >> text;

}

Date::DaysSince(const char *text) {

 int year, month, day, totDays, delim;

 int daysInYear = 0;

 int i;

 int leap = 0;

 int rc = sscanf(text, "%4d%c%2d%c%2d",

 &year, &delim, &month, &delim, &day);

 --month;

 if (rc != 5 || year < 0 || year > 9999 ||

 month < 0 || month > 11 ||

 day < 1 || day > 31 ||

 (day > numDays[month]&& month != 1)) {

 return(-1);

 }

 if ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0)

 leap = 1;

 if (month == 1 && day > numDays[month]) {

 if (day > 29)

 return(-1);

 else if (!leap)

 return (-1);

 }

 for (i=0;i<month;++i) {

 daysInYear += numDays[i];

 }

 daysInYear += day;

 // correct for leap year

 if (leap == 1 &&

 (month > 1 || (month == 1 && day == 29)))

 ++daysInYear;

 totDays = (curDay - daysInYear) + (curYear - year)*365;

Figure 6. z/OS C++ Biorhythm Example Program (Part 2 of 3)

14 XL C/C++ for z/VM: User's Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

Compiling, Binding, and Running the C++ Example

In general, you can compile, bind, and run C++ programs under CMS or the

OpenExtensions shell. For more information, see Chapter 7, “Compiling a C/C++

Program,” on page 43 and Chapter 8, “Binding and Running a C/C++ Program,” on

page 57.

Non-XPLINK and XPLINK under CMS

If the sample C++ program (CCNUBRC) was stored in CCNUBRC CXX L, and the

sample include file (CCNUBRH) was stored in CCNUBRH H L, the following set of

commands would compile, bind, and run the source code, using the Language

Environment:

�1� Makes the runtime library available to the compiler.

�2� Compiles CCNUBRC CXX L and stores the object module in CCNUBRC

TEXT A.

�3� Using CCNUBRC TEXT A, created by the CC EXEC, generates an

executable module called CCNUBRC MODULE using default options.

�4� Makes the runtime library available to the executable module.

�5� Runs CCNUAAM MODULE A using default options.

Non-XPLINK and XPLINK under the OpenExtensions Shell

If the sample C++ program (CCNUBRC) was stored in ./ccnubrc.cpp, and the

sample include file (CCNUBRH) was stored in ./ccnubrh.h, the following set of

commands would compile, bind, and run the source code, using the Language

Environment:

 // now, correct for leap year

 for (i=year+1; i < curYear; ++i) {

 if ((i % 4 == 0 && i % 100 != 0) || i % 400 == 0) {

 ++totDays;

 }

 }

 return(totDays);

}

Figure 6. z/OS C++ Biorhythm Example Program (Part 3 of 3)

GLOBAL LOADLIB SCEERUN �1�

CC CCNUBRC CXX L �2�

-- or, for XPLINK --

CC CCNUBRC CXX L (XPLINK �2�

CMOD CCNUBRC (C++ �3�

-- or, for XPLINK --

CMOD CCNUBRC (XPLINK C++ �3�

GLOBAL LOADLIB SCEERUN �4�

CCNUBRC �5�

Figure 7. Commands to Compile, Bind, and Run a C++ Program under CMS

Chapter 3. C++ Examples 15

|
|
|
|
|
|
|
|

|

|

|

|

Note: In this example, the current working directory is used, so make sure that you

are in the directory you want to use. Use the pwd command to display the

current working directory, the mkdir command to create a new directory, and

the cd command to change directories.

�1� Compiles and binds ccnubrc.cpp, and generates an executable module

called bio.

�2� Makes the runtime library available to the executable module.

�3� Runs bio using default options.

Example of a C++ Template Program

A class template or generic class is a blueprint that describes how members of a

set of related classes are constructed.

The following example shows a simple C++ program that uses templates to perform

simple operations on linked lists.

The main program, CCNUTMP (see “CCNUTMP” on page 17), uses three header

files that are from the Standard C++ Library: list, string, and iostream. It has one

class template: list.

cxx -o //bio.module ccnubrc.cpp �1�

-- or, for XPLINK --

cxx -o //bio.module -Wc,xplink -Wb,x ccnubrc.cpp �1�

cms global loadlib sceerun �2�

bio �3�

Figure 8. Commands to Compile, Bind, and Run a C++ Program under OpenExtensions

16 XL C/C++ for z/VM: User's Guide

|

|

CCNUTMP

#include <list>

#include <string>

#include <iostream>

using namespace std;

template <class Item> class IOList {

 public:

 IOList() : myList() {}

 void write();

 void read(const char *msg);

 void append(Item item) {

 myList.push_back(item);

 }

 private:

 list<Item> myList;

};

template <class Item> void IOList<Item>::write() {

 ostream_iterator<Item> oi(cout, " ");

 copy(myList.begin(), myList.end(), oi);

 cout << ’\n’;

}

Figure 9. C++ Template Program (Part 1 of 2)

Chapter 3. C++ Examples 17

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

Compiling, Binding, and Running the C++ Template Example

This section describes the commands to compile, bind and run the template

example under CMS and the OpenExtensions shell.

Under CMS

If the sample C++ template program (CCNUTMP) was stored in CCNUTMP CXX L,

the following set of commands would compile, bind, and run the source code, using

the Language Environment:

template <class Item> void IOList<Item>::read(const char *msg) {

 Item item;

 cout << msg << endl;

 istream_iterator<Item> ii(cin);

 copy(ii, istream_iterator<Item>(), back_insert_iterator<list<Item> >(myList));

}

int main() {

 IOList<string> stringList;

 IOList<int> intList;

 char line1[] = "This program will read in a list of ";

 char line2[] = "strings, integers and real numbers";

 char line3[] = "and then print them out";

 stringList.append(line1);

 stringList.append(line2);

 stringList.append(line3);

 stringList.write();

 intList.read("Enter some integers (/* to terminate)");

 intList.write();

 string name1 = "Bloe, Joe";

 string name2 = "Jackson, Joseph";

 if (name1 < name2)

 cout << name1 << " comes before " << name2;

 else

 cout << name2 << " comes before " << name1;

 cout << endl;

 int num1 = 23;

 int num2 = 28;

 if (num1 < num2)

 cout << num1 << " comes before " << num2;

 else

 cout << num2 << "comes before " << num1;

 cout << endl;

 return(0);

}

Figure 9. C++ Template Program (Part 2 of 2)

18 XL C/C++ for z/VM: User's Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

�1� Makes the runtime library available to the compiler.

�2� Compiles CCNUTMP CXX L and stores the object module in CCNUTMP

TEXT A.

�3� Using CCNUTMP TEXT A, created by the CC EXEC, generates an

executable module called CCNUTMP MODULE using default options.

�4� Makes the runtime library available to the executable module.

�5� Runs CCNUTMP MODULE A using default options.

Under the OpenExtensions Shell

If the sample C++ template program (CCNUTMP) was stored in ./ccnutmp.cpp, the

following set of commands would compile, bind, and run the source code, using the

Language Environment:

�1� Compiles ccnutmp.cpp, binds the created object module, and stores the

load module in ccnutmp.

�2� Makes the runtime library available to the executable module.

�3� Runs ccnutmp using default options.

GLOBAL LOADLIB SCEERUN �1�

CC CCNUTMP CXX L (TEMPL �2�

-- or, for XPLINK --

CC CCNUTMP CXX L (TEMPL XPLINK �2�

CMOD CCNUTMP (C++ �3�

-- or, for XPLINK --

CMOD CCNUTMP (XPLINK C++ �3�

GLOBAL LOADLIB SCEERUN �4�

CCNUTMP �5�

Figure 10. Commands to Compile, Bind, and Run a C++ Template Program under CMS

cxx -o //ccnutmp.module -Wc,templ ccnutmp.cpp �1�

-- or, for XPLINK --

cxx -o //ccnutmp.module -Wc,templ,xplink -Wb,x ccnutmp.cpp �1�

cms global loadlib sceerun �2�

ccnutmp �3�

Figure 11. Commands to Compile, Bind, and Run a C++ Template Program under OpenExtensions

Chapter 3. C++ Examples 19

|

|

|

|

|

|
|
|

20 XL C/C++ for z/VM: User's Guide

Chapter 4. Compiler Options

This chapter describes the options that you can use to alter the compilation of your

program. For information on compiler options when compiling under

OpenExtensions, see Chapter 5, “Compiler Options under OpenExtensions,” on

page 37.

Specifying Compiler Options

You can override your installation default options when you compile your C or C++

program, by specifying an option in one of the following ways:

v In the option list when you invoke the IBM-supplied CC EXEC. See “Syntax of

the CC EXEC” on page 44 for details.

v In an options file. See “OPTFILE | NOOPTFILE” on page 32 for details.

v In a #pragma options preprocessor directive within your source file. See

“Specifying Compiler Options Using #pragma options” on page 22 for details.

Compiler options specified on the command line can override compiler options

used in #pragma options.

If two contradictory options are specified, the last one specified is accepted and the

first ignored.

If you use one of the following compiler options, the option name is inserted at the

bottom of your object module indicating that it was used:

 AGGRCOPY

ALIAS (C compile only)

ANSALIAS

ARCHITECTURE

ARGPARSE

ASSERT(RESTRICT)

BITFIELD

CHARS

COMPACT

COMPRESS

CONVLIT

CSECT

CVFT (C++ compile only)

DEBUG

DLL

EXECOPS

EXPORTALL

FLOAT

GOFF

GONUMBER

HOT

© Copyright IBM Corp. 2003, 2008 21

||

||

||

IGNERRNO

INITAUTO

INLINE

KEYWORD (C++ compile only)

LANGLVL

LIBANSI

LOCALE

LONGNAME

MAXMEM

OBJECTMODEL

OPTIMIZE

PLIST

REDIR

RENT (C compile only)

ROCONST

ROSTRING

ROUND

RTTI (C++ compile only)

SERVICE

SPILL

START

STRICT

STRICT_INDUCTION

TARGET

TEMPLATERECOMPILE (C++ compile only)

TEMPLATEREGISTRY (C++ compile only)

TMPLPARSE (C++ compile only)

TEST

TUNE

UNROLL

UPCONV (C compile only)

XPLINK

Specifying Compiler Options Using #pragma options

You can use the #pragma options preprocessor directive to override the default

values for compiler options. Remember that compiler options specified on the

command line can override compiler options used in #pragma options. For complete

details on the #pragma options preprocessor directive, see z/OS: XL C/C++

Language Reference.

The #pragma options preprocessor directive must appear before the first C

statement in your input source file. Only comments and other preprocessor

directives can precede the #pragma options directive, and only the options listed

below can be specified. If you specify a compiler option that is not given in the

22 XL C/C++ for z/VM: User's Guide

||

following list, the compiler generates a warning message and the option is ignored.

 AGGREGATE

ALIAS

ANSALIAS

ARCHITECTURE

CHECKOUT

GONUMBER

IGNERRNO

INLINE

LIBANSI

MAXMEM

OBJECT

OPTIMIZE

RENT

SERVICE

SPILL

START

TEST

TUNE

UPCONV

XREF

Notes:

1. When you specify conflicting attributes either explicitly or implicitly by the

specification of other options, the last explicit option is accepted. No diagnostic

message is issued to indicate that any options are overridden.

2. When you specify the SOURCE compiler option on the command line, your listing

will contain an options list indicating the options in effect at invocation. The

values in the list are the options specified on the command line or the default

options specified at installation. These values do not reflect any options that are

specified in the #pragma options directive.

Compiler Option Defaults

You can alter the compilation of your program by specifying compiler options when

you invoke the compiler or when you use the preprocessor directive, #pragma

options, in your source program. Options that you specify when you invoke the

compiler override installation defaults or compiler options specified through a

#pragma options directive.

The defaults of the compiler options supplied by IBM can be changed to other

selected defaults when XL C/C++ is installed. To determine the current defaults,

compile a program with only the SOURCE compiler option specified. In the listing

generated, you can view the options that are in effect at invocation; that is, the

settings that result from the interaction of the command-line options and the

defaults that were specified at installation. The listing does not reflect options

specified in #pragma options in the source file being compiled.

Summary of Compiler Options

See the corresponding section in z/OS: XL C/C++ User’s Guide.

Descriptions of Compiler Options

For details of specific compiler options, see the corresponding section in z/OS: XL

C/C++ User’s Guide. For the most part, the compiler options will work as described.

However, some compiler options are not supported, and other compiler options

have operational differences, as identified in the following sections.

Compiler Options Not Supported

The following z/OS XL C/C++ compiler options are not supported in IBM XL C/C++

for z/VM:

ARMODE All functions compiled in access-register mode

Chapter 4. Compiler Options 23

|
|

||

ASCII ASCII support

CICS CICS® support

DBRMLIB Database request module for SQL option

DFP Decimal floating-point support

EPILOG Supports user-supplied epilog code

GENASM Generates HLASM source code

HGPR 64-bit General Purpose Register support

IPA Interprocedural Analysis

LP64 AMODE 64 support

METAL Generates HLASM code with no Language Environment runtime

dependencies

PROLOG Supports user-supplied prolog code

SQL Supports embedded SQL statements

TEMPINC Specifies a location for C++ template instantiation files

Note: Use the TEMPLATEREGISTRY option instead.

WARN64 Supports diagnostic messages for 32-bit to 64-bit conversions

Compiler Options with Operational Differences

The following z/OS XL C/C++ compiler options are supported but operate differently

in IBM XL C/C++ for z/VM.

ARCHITECTURE

The default for this option is ARCH(4). Note that code generated for groups 5 and

above (z/Architecture® mode) might not execute on CMS.

CSECT | NOCSECT

�� CSEct

NOCSEct
 ��

This option does not accept a qualifier. If a qualifier is specified it is ignored.

If CSECT is specified, it will name the code, static and test sections of the object

module as basename#suffix, where:

basename

is one of the following:

v File name of the primary source file, if it is a CMS record file

v Source file name, with path and extension information removed, if it is a BFS

file

suffix

is one of the following:

C For code CSECT

24 XL C/C++ for z/VM: User's Guide

||

||

||

||

||

||

||

||
|

||

||

||

|

||

|
|
|

S For static CSECT

T For test CSECT

Specifying CSECT allows the compiler to generate long CSECT names. For NOGOFF, if

the compiler option LONGNAME is not in effect when CSECT is specified, the compiler

turns it on, and issues an informational message. For GOFF, both NOLONGNAME and

LONGNAME options are supported.

When CSECT is specified, the code, data and test CSECTs are always generated.

The test CSECT has content only when the TEST option is also specified.

DEBUG | NODEBUG

��
 NODEBUG

DEBUG
 (FORMAT (ISD))

�

�

�

(

LEVEL

(

0

)

)

HOOK

NOHOOK

,

(

LINE

)

NOLINE

BLOCK

NOBLOCK

PATH

NOPATH

FUNC

NOFUNC

CALL

NOCALL

NONE

ALL

PROFILE

SYMBOL

NOSYMBOL

 ��

Defaults:

v NODEBUG

v For FORMAT, the default is ISD.

v For LEVEL, the default is LEVEL(0).

v For HOOK, the defaults are HOOK(ALL) for NOOPTIMIZE and

HOOK(NONE,PROFILE) for OPTIMIZE.

v For SYMBOL, the defaults are SYMBOL for NOOPTIMIZE and NOSYMBOL for

OPTIMIZE.

FORMAT(ISD)

 produces the same debug information as the TEST option.

LEVEL(0)

Chapter 4. Compiler Options 25

|
|

|||||||||||||||||||||||||||||
|

|
|||

|
||

|

|

|

|

|
|

|
|

|

|

|
|

controls the amount of debug information produced. LEVEL(0) is the only level

currently supported.

HOOK

controls the generation of LINE, BLOCK, PATH, CALL, and FUNC hook

instructions. Hook instructions appear in the compiler Pseudo Assembly listing

in the following form:

EX r0,HOOK..[type of hook]

Note: If the OPTIMIZE compiler option is specified, the only valid suboptions

for HOOK are CALL and FUNC. If other suboptions are specified, they

will be ignored.

The type of hook that each hook suboption controls is summarized in the

following list:

v LINE

– STMT - General statement

v BLOCK

– BLOCK-ENTRY - Beginning of block

– BLOCK-EXIT - End of block

– MULTIEXIT - End of block and procedure

v PATH

– LABEL - A label

– DOBGN - Start of a loop

– TRUEIF - True block for an if statement

– FALSEIF - False block for an if statement

– WHENBGN - Case block

– OTHERW - Default case block

– GOTO - Goto statement

– POSTCOMPOUND - End of a PATH block

v CALL

– CALLBGN - Start of a call sequence

– CALLRET - End of a call sequence

v FUNC

– PGM-ENTRY - Start of a function

– PGM-EXIT - End of a function

There is also a set of shortcuts for specifying a group of hooks:

NONE The same as specifying NOLINE, NOBLOCK, NOPATH,

NOCALL, and NOFUNC. It instructs the compiler to suppress

all hook instructions.

ALL The same as specifying LINE, BLOCK, PATH, CALL, and

FUNC. It instructs the compiler to generate all hook instructions.

This is the ideal setting for debugging purposes.

PROFILE The same as specifying CALL and FUNC.

SYMBOL

generates symbol information that gives you access to variable and other

symbol information.

26 XL C/C++ for z/VM: User's Guide

|
|

|
|
|
|

|

|
|
|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

||
|
|

||
|
|

||

|
|
|

If you specify the INLINE and DEBUG compiler options when NOOPTIMIZE is in

effect, INLINE is ignored.

ENUMSIZE

��
 SMALL

ENUM

(

INT

)

1

2

4

��

Default: ENUM(SMALL)

SMALL

specifies that enumerations occupy a minimum amount of storage, which is

either 1, 2, or 4 bytes of storage, depending on the range of the enum constants.

INT

specifies that enumerations occupy 4 bytes of storage and are represented by

int.

1 specifies that enumerations occupy 1 byte of storage.

2 specifies that enumerations occupy 2 bytes of storage

4 specifies that enumerations occupy 4 bytes of storage.

EVENTS | NOEVENTS

�� EVENTs

NOEVENTs

(filename)
 ��

The EVENTS option creates an events file that contains error information and

source file statistics.

EVENTS(filename) places the events information in the specified file. filename can

be a CMS record or BFS file. If you do not specify a file name for the EVENTS option,

the compiler generates a file name as follows:

v For CMS source files, the events information is written to a file that has the name

of the source file and a file type of SYSEVENT.

v For BFS source files, the events information is written to a file that has the name

of the source file and a .err extension.

The compiler ignores #line directives when the EVENTS option is active, and issues

a warning message.

Chapter 4. Compiler Options 27

|
|

|
|

|||||||||||||||||||||||||||

|
||

|

|
|
|

|
|
|

||

||

||

INLRPT | NOINLRPT

�� INLRpt

NOINLRpt

(filename)
 ��

If you use the OPTIMIZE option, you can also use INLRPT to specify that the compiler

generate a report as part of the compiler listing. This report provides the status of

subprograms that were inlined, specifies whether they were inlined or not and

displays the reasons for the action of the compiler.

You can specify filename for the inline report output file. filename can be a CMS

record or BFS file. If you do not specify a file name for the INLR option, the compiler

generates a file name as follows:

v For CMS record source files, the report is created in a file that has the source file

name, file type LISTING, and file mode A.

v For BFS source files, the report is created in a BFS file that has the source file

name with a .lst extension.

The NOINLR option can optionally take a filename suboption. This file name then

becomes the default. If you subsequently use the INLR option without filename, the

compiler uses the file name that you specified in the earlier specification or NOINLR.

For example,

 CC HELLO (NOINLR(/hello.lis) INLR OPT

is the same as specifying:

 CC HELLO (INLR(/hello.lis) OPT

If you specify this multiple times, the compiler uses the last specified option with the

last specified suboption. The following two specifications have the same result:

 CC HELLO (NOINLR(/hello.lis) INLR(/n1.lis) NOINLR(/test.lis) INLR

 CC HELLO (INLR(/test.lis)

If you specify file names with the SOURCE, LIST or INLRPT options, all the listing

sections are combined into the last file name specified.

LIST | NOLIST

�� LISt

NOLISt

(filename)
 ��

The LIST option instructs the compiler to generate a listing of the machine

instructions in the object module (in a format similar to assembler language

instructions) in the compiler listing.

LIST(filename) places the compiler listing in the specified file. filename can be a

CMS record or BFS file. If you do not specify a file name for the LIST option, the

compiler generates a file name as follows:

28 XL C/C++ for z/VM: User's Guide

v For CMS record source files, the listing is created in a file that has the source file

name, file type LISTING, and file mode A.

v For BFS source files, the listing is created in a BFS file that has the source file

name with a .lst extension.

The NOLIST option optionally takes a filename suboption. This file name then

becomes the default. If you subsequently use the LIST option without a filename

suboption, the compiler uses the file name that you specified in the earlier NOLIST.

For example, the following specifications have the same effect:

 CC HELLO (NOLIST(/hello.lis) LIST

 CC HELLO (LIST(/hello.lis)

If you specify file names with the SOURCE, LIST or INLRPT options, all the listing

sections are combined into the last file name specified.

LSEARCH | NOLSEARCH

��

�

 ,

LSEarch

(

opt

)

//

NOLSEarch

��

The LSEARCH option directs the preprocessor to look for user include files in the

specified libraries in the VM/CMS MACLIBs, on the specified minidisks, or in the

specified BFS directories. User include files are files associated with the #include

"filename" format of the #include preprocessor directive. See “Using Include Files”

on page 49 for a description of the #include preprocessor directive.

For further information on library search sequences, see “Search Sequences for

Include Files” on page 54.

You must use the double slashes (//) to specify non-BFS searches when the OE

compiler option is specified. (You may use them regardless of the OE option.)

Parts of the #include filename are appended to each LSEARCH opt to search for the

include file. opt has the format:

��

�

 CMS_filemode

BFS_directory

,

(fname.suffix)

=

(

subopt

)

 ��

CMS_filemode

is the file mode where the sequential disk search for the user include file

begins.

Chapter 4. Compiler Options 29

BFS_directory

is the BFS path name indicating the directory that should be searched for the

include file.

(fname.suffix) = (subopt,subopt,...)

is a specification where:

fname

is the name of the include file or *.

suffix

is the suffix of the include file or *.

subopt

indicates a sub-path to be used in the search for the include files that

match the pattern of fname.suffix and should appear at least once. The

possible values are:

LIB([mac,...]) Each mac is a MACLIB name that should be searched in the

same order as in the list. The format of the name is either

that of a ddname (form DD:name) or fn.ft.fm, where the ft

must be MACLIB and the default fm is *.

NOLIB Specifies that all LIB(...) previously specified for this

pattern should be ignored at this point. For example,

(*.h)=(LIB(n1.MACLIB),NOLIB,LIB(n4.MACLIB)) is

equivalent to (*.h)=(LIB(n4.MACLIB)).

When the #include filename matches the pattern of fname.suffix, the

search continues according to the subopts in the order given. An asterisk (*)

in fname or suffix matches anything. If the file is not found, other searches

are attempted according to the remaining options in LSEARCH.

The MACLIBs are searched in the same order for the include file with *

(asterisk) matching anything.

 If a file mode is also specified using the SEARCH option, the disks specified by the

LSEARCH option are searched first. If the user include file is not located on any of the

LSEARCH disks, the disks in the SEARCH option are scanned, in the standard CMS

search order, for the user include file.

If no disk is specified, the file mode A will be added to the end of the LSEARCH

options.

For more information on the search paths, see “Search Sequences for Include

Files” on page 54.

Under CMS, the NOLSEARCH option instructs the preprocessor to perform the

standard CMS search for user include files.

Note: If the filename in the #include directive is in absolute form, searching is not

performed. See “Determining If filename Is In Absolute Form” on page 52 for

more details on absolute #include filename.

Specifying Byte File System (BFS) Files: When specifying BFS library searches,

do not put double slashes at the beginning of the LSEARCH opt. Use path names

separated by slashes (/) in the LSEARCH opt for a BFS library. When the LSEARCH

opt does not start with double slashes, any single slash in the name indicates a

30 XL C/C++ for z/VM: User's Guide

BFS library. If you do not have path separators (/), then setting the OE compiler

option on indicates that this is a BFS library; otherwise the library is interpreted to

be a CMS library.

The opt specified for LSEARCH is combined with the filename in #include to form the

include file name, for example:

LSEARCH(/u/mike/myfiles)

#include "new/headers.h"

The resulting BFS file name is:

/u/mike/myfiles/new/headers.h

OBJECT | NOOBJECT

�� OBJect

NOOBJect

(filename)
 ��

The OBJECT option specifies whether the compiler is to produce an object module.

The GOFF compiler option specifies the object format that will be used to encode the

object information.

OBJECT(filename) places the object module in the specified file. filename can be:

v CMS record file

v Single-letter mode to which the object module is stored as filename TEXT fm

v BFS file

v Fully qualified path name

v Path name relative to the current working directory

If you do not specify a file name for the OBJECT option, the compiler generates a file

name as follows:

v For CMS record source files, the listing is created in a file that has the source file

name, file type TEXT, and file mode A.

v For BFS source files, the listing is created in a BFS file that has the source file

name with a .o extension.

The NOOBJ option can optionally take a filename suboption. This file name then

becomes the default. If you subsequently use the OBJ option without a filename

suboption, the compiler uses the file name that you specified in the earlier NOOBJ.

For example, the following specifications have the same result:

 CC HELLO (NOOBJ(/hello.obj) OBJ

 CC HELLO (OBJ(/hello.obj)

If you specify OBJ and NOOBJ multiple times, the compiler uses the last specified

option with the last specified suboption. For example, the following specifications

have the same result:

 CC HELLO (NOOBJ(/hello.obj) OBJ(/n1.obj) NOOBJ(/test.obj) OBJ

 CC HELLO (OBJ(/test.obj)

Chapter 4. Compiler Options 31

If you request a listing by using the SOURCE, INLRPT, or LIST option, and you also

specify OBJECT, the name of the object module is printed in the listing prolog.

You can specify this option using the pragma option directive for C.

OPTFILE | NOOPTFILE

�� OPTFile

NOOPTFile

(filename)
 ��

The OPTFILE option directs the compiler to look for compiler options in the file

specified.

OPTFILE(filename) specifies the name of the options file where your compiler

options are defined. filename can be a CMS record or BFS file. The compiler

opens filename as it is specified. If filename is not a valid name, or if the file does

not exist, the compiler does not issue an error message. For example, specifying:

 CC cpgma (OPTFILE(myopts)

does not cause an error, but file myopts is not opened.

Specifying:

 CC cpgma (OPTFILE(myopts optfile)

opens options file myopts optfile. Under the OpenExtensions shell, filename is a

BFS file. If filename is not specified, DD:SYSOPTF is used.

The NOOPTF option can optionally take a filename suboption. This file name then

becomes the default. If NOOPTF(filename) is specified and a subsequent OPTF option

is used without a filename suboption, the file name specified in the previous NOOPTF

is used. For example,

 CC HELLO (NOOPTF(hello.opt) OPTF

is equivalent to specifying:

 CC HELLO (OPTF(hello.opt)

The options are specified in a free format with the same syntax as they would have

on the command line. Everything specified in the file is taken to be part of a

compiler option (except for the continuation character) and unrecognized entries are

flagged. Nothing on a line is ignored.

If the record format of the options file is fixed and the record length is greater than

72, columns 73 to the end-of-line are treated as sequence numbers and are

ignored.

Notes:

1. You cannot nest the OPTFILE option. If the OPTFILE option is also used in the file

specified by another OPTFILE option, it is ignored.

2. If NOOPTFILE is specified after a valid OPTFILE, it does not undo the effect of the

previous OPTFILE.

32 XL C/C++ for z/VM: User's Guide

3. If the file cannot be opened or cannot be read, NO warning message will be

issued and the OPTFILE option will be ignored.

4. The options file can be an empty file.

The OPTFILE option is added to the options section of the compiler-generated listing

file.

PPONLY | NOPPONLY

��

�

 PPonly

NOPPonly

,

(

filename

)

COMMENTS

NOCOMMENTS

LINES

NOLINES

n

*

 ��

The PPONLY option specifies that only the preprocessor is to be run against the

source file. This output of the preprocessor consists of the original source file with

all the macros expanded and all the include files inserted. It is in a format that can

be compiled. The suboptions are:

filename

is the file name for the preprocessed output file. filename can be a CMS record

or BFS file. If a filename is not specified for the PPONLY option, the compiler

writes the preprocessed output as follows:

v For CMS record source files, the preprocessed output is written to a file that

has the source file name and file type EXPAND.

v For BFS source files, the preprocessed output is written to a BFS file that

has the source file name with a .i extension.

NOCOMMENTS

COMMENTS

specifies whether comments should be preserved in the preprocessed output.

The default is NOCOMMENTS.

NOLINES

LINES

specifies whether #line directives should be issued at include file boundaries,

block boundaries, and where there are more than 3 blank lines. The default is

NOLINES.

n is an integer between 2 and 32760 inclusive that specifies the column number

at which all lines are folded.

* specifies that all lines are folded at the maximum record length of 32760.

Otherwise, all lines are folded to fit in the output file, based on the record length

of the output file.

Chapter 4. Compiler Options 33

The PPONLY suboptions are cumulative. If you specify suboptions in multiple

instances of PPONLY and NOPPONLY, all the suboptions are combined and used

for the last occurrence of the option. For example, the following three specifications

have the same result:

 CC HELLO (NOPPONLY(/aa.exp) PPONLY(LINES) PPONLY(NOLINES)

 CC HELLO (PPONLY(/aa.exp,LINES,NOLINES)

 CC HELLO (PPONLY(/aa.exp,NOLINES)

All #line and #pragma preprocessor directives (except for margins and sequence

directives) remain. When you specify PPONLY(*), #line directives are generated to

keep the line numbers generated for the output file from the preprocessor similar to

the line numbers generated for the source file. All consecutive blank lines are

suppressed.

If you specify the PPONLY option, the compiler turns on the TERMINAL option. If you

specify the SHOWINC, XREF, AGGREGATE, or EXPMAC options with the PPONLY option, the

compiler issues a warning, and ignores the options.

If you specify the PPONLY and LOCALE options, all the #pragma filetag directives in

the source file are suppressed. The compiler generates its #pragma filetag

directive at the first line in the preprocessed output file in the following format:

 ??=pragma filetag ("locale code page")

In the above, ??= is a trigraph representation of the # character.

The code page in the pragma is the code set that is specified in the LOCALE option.

For more information on locales, see z/OS: XL C/C++ Programming Guide.

The NOPPONLY option specifies that both the preprocessor and the compiler are to be

run against the source file.

If you specify both PPONLY and NOPPONLY, the last one that is specified is used.

SEARCH | NOSEARCH

��

�

 ,

SEarch

(

opt

)

//

NOSEarch

��

The SEARCH option directs the preprocessor to look for system include files in the

specified libraries in the VM/CMS MACLIBs, on the specified minidisks, or in the

specified BFS directories. System include files are those files associated with the

#include <filename> format of the #include preprocessor directive. See “Using

Include Files” on page 49 for a description of the #include preprocessor directive.

For further information on library search sequences, see “Search Sequences for

Include Files” on page 54.

34 XL C/C++ for z/VM: User's Guide

The suboptions for the SEARCH option are identical to those for the LSEARCH option,

as described in “LSEARCH | NOLSEARCH” on page 29.

Any NOSEARCH option cancels all previous SEARCH specifications and any

SEARCH options following it will be used. When several SEARCH compiler options

are specified, all the libraries in these SEARCH options are used to find the user

include files.

The NOSEARCH option instructs the preprocessor to perform the standard CMS

search for system include files.

Note: If the file name in the #include directive is in absolute form, searching is not

performed. See “Determining If filename Is In Absolute Form” on page 52 for

more details on absolute #include filename.

SOURCE | NOSOURCE

�� SOurce

NOSOurce

(filename)
 ��

The SOURCE option generates a listing that shows the original source input

statements plus any diagnostic messages.

SOURCE(filename) places the listing in the specified file. filename can be a CMS

record or BFS file. If you do not specify a file name for the SOURCE option, the

compiler constructs the file name as follows:

v For CMS record source files, the listing is created in a file that has the source file

name, file type LISTING, and file mode A.

v For BFS source files, the listing is created in a BFS file that has the source file

name with a .lst extension.

The NOSOURCE option can optionally take a filename suboption. This file name then

becomes the default. If you subsequently use the SOURCE option without a filename

suboption, the compiler uses the file name that you specified in the earlier

NOSOURCE. For example, the following specifications have the same result:

 CC HELLO (NOSO(/hello.lis) SO

 CC HELLO (SO(/hello.lis)

If you specify SOURCE and NOSOURCE multiple times, the compiler uses the last

specified option with the last specified suboption. For example, the following

specifications have the same result:

 CC HELLO (NOSO(/hello.lis) SO(/n1.lis) NOSO(/test.lis) SO

 CC HELLO (SO(/test.lis)

If you specify file names with the SOURCE, LIST or INLRPT options, all the listing

sections are combined into the last file name specified.

Using the C Compiler Listing

See the corresponding section in z/OS: XL C/C++ User’s Guide.

Chapter 4. Compiler Options 35

Using the C++ Compiler Listing

See the corresponding section in z/OS: XL C/C++ User’s Guide.

36 XL C/C++ for z/VM: User's Guide

Chapter 5. Compiler Options under OpenExtensions

This chapter discusses the compiler options that you can use when compiling under

OpenExtensions. For information about compiler options under VM/CMS, see

Chapter 4, “Compiler Options,” on page 21.

Specifying Compiler Options Using c89/cxx

The c89 and cxx utilities are the OpenExtensions interface to the XL C/C++

compiler. When you issue c89 or cxx for a C or C++ application program, the utility

passes information about the application program and the compiler options to the

XL C/C++ compiler for processing.

The c89 and cxx utilities select specific values for most compiler options. You can

cause them to change the settings of those C/C++ compiler options that they have

corresponding flags (options) for. If you want to pass other C/C++ compiler options

to the XL C/C++ compiler, use the -W option. If you used the options -E, -g, -s, or

-O you cannot override the compiler options forced by the c89 or cxx utility. This

holds true even when using the -W option to explicitly pass XL C/C++ compiler

options.

XL C/C++ compiler options are summarized in “Compiler Option Defaults” on page

23 and described in detail in “Descriptions of Compiler Options” on page 23. For

more information on OpenExtensions commands, see z/VM: OpenExtensions

Commands Reference.

c89/cxx Default Compiler Settings

c89 overrides the default settings for the XL C/C++ compiler options. The overridden

defaults are:

v DEFINE(errno=(*__errno()))

v DEFINE(_POSIX_SOURCE=1)

v DEFINE(_POSIX1_SOURCE=2)

v DEFINE(_POSIX_C_SOURCE=2)

v LANGLVL(ANSI)

v OE

v RENT

c89 Selectable Compiler Settings

Format

c89 [-cgsEOV]

 [-D name[=value]] [-U name]...

 [-W c,opt[,opt]...]...

 [-o outfile]

 [-I directory]... [-L directory]...

 [file.c]... [file.a]... [file.o]...

 [-l libname]...

cxx [-+cgsEOV]

 [-D name[=value]] [-U name]...

 [-W c,opt[,opt]...]...

 [-o outfile]

 [-I directory]... [-L directory]...

 [file.c]... [file.a]... [file.o]...

 [-l libname]...

© Copyright IBM Corp. 2003, 2008 37

|
|
|

Description

c89/cxx Option Compiler Option

-+ (cxx only) All source files are to be recognized as C++ source

files.

-c Compilation only

-D Define preprocessor macros.

-E Run the C preprocessor only (do not generate an

object file or run the linkage editor) and copy output

source to stdout.

-g Generate symbolic information with the compiled

object. The c89 -s option, the default, indicates that

no debugging information or line number tables be

generated.

-I Specify where to search for C include files. The

search path is supplied as a value on the option.

For example:

-I /usr/hankvp/bin/hdrs

-L Specify where to search for archive files specified

by the -I option.

-O Set an optimization level and place functions at

their point of call.

o Write the executable file to outfile.

-s Do not generate symbolic information with the

compiled object.

-U Undefine preprocessor macros (including c89

default macro definitions).

-V Write a ″verbose″ listing to stdout. Listings are

generated by the compiler and binder.

 The information in the compiler listing corresponds

to those compiler options set by the c89 -V option.

For a complete description of the effect of each

compiler option, see “Descriptions of Compiler

Options” on page 23.

-W Pass compiler or module build options. Phase 0 or

c specifies the compile phase, and phase b

specifies the module build phase. The module build

phase is binder processing to create the module

file. To pass options to the BIND command, the

module build option must be b. For example, to

pass the LANGLVL option to the compiler, specify:

 c89 -W 0,langlvl(extended)

and to write the binder map to stdout, specify:

 c89 -W b,b,map file.c

 For a detailed description of the c89 options, see z/VM: OpenExtensions

Commands Reference.

38 XL C/C++ for z/VM: User's Guide

c89 uses the following compiler option settings if the c89 option listed is specified

(more than one compiler option may be specified by a particular c89 option):

 Table 1. c89 Option and Corresponding Compiler Option

c89 Option Compiler Options(s)

D value DEFINE(value)

Note: The c89 -U value option causes c89 to not specify a corresponding DEFINE(value)

compiler option.

-E PPONLY(1024)

-g TEST(ALL)

GONUMBER

-Ivalue SEARCH(value)

-O INLINE(NOAUTO,NOREPORT,250,1000)

NOMEMORY

OPTIMIZE(2)

-s NOGONUMBER

NOTEST

-V AGGREGATE

CHECKOUT(ALL,NOEXTERN,NOPPCHECK,NOPPTRACE)

FLAG(I)

LIST

OFFSET

SHOWINC

SOURCE

XREF

Note: Use of the c89 -V option may result in a return code of 4 from the compile

step when the return code should be 0. This is because of the specification

of the CHECKOUT option. Also, the specification of FLAG(I) may cause

additional informational messages to be directed to stderr.

Feature Test Macros

For information on how to use the feature test macros, see XL C/C++ for z/VM:

Runtime Library Reference.

Chapter 5. Compiler Options under OpenExtensions 39

40 XL C/C++ for z/VM: User's Guide

Chapter 6. Runtime Options

This chapter describes runtime options and the #pragma runopts preprocessor

directives available to you with XL C/C++ and Language Environment. For

information on runtime options under OpenExtensions, refer to “Specifying Runtime

Options under OpenExtensions” on page 74.

Specifying Runtime Options

To allow your application to recognize runtime options, either the EXECOPS compiler

option, or the #pragma runopts(execops) directive must be in effect. The default

compiler option is EXECOPS.

You can specify runtime options as follows:

v On the command line when you invoke your program under VM/CMS

v At compile time, on a #pragma runopts directive in your main program

If EXECOPS is in effect, use a slash ’/’ to separate runtime options from arguments

that you pass to the application. For example:

 PGMX STORAGE(FE,FE,FE)/PARM1 PARM2 PARM3

If EXECOPS is in effect, Language Environment interprets the character string that

precedes the slash as runtime options. It passes the character string that follows

the slash to your application as arguments. If no slash separates the arguments,

Language Environment interprets the entire string as an argument.

If EXECOPS is not in effect, Language Environment passes the entire string to your

application.

If you specify two or more contradictory options (for example in a #pragma runopts

statement), the last option that is encountered is accepted. Runtime options that

you specify at execution time have higher precedence than those specified at

compile time.

For more information on the precedence and specification of runtime options for

applications that are compiled with the Language Environment, see z/OS: Language

Environment Programming Reference.

Runtime Options Using Language Environment

You can use the #pragma runopts preprocessor directive to specify Language

Environment runtime options, including ARGPARSE, ENV, PLIST, REDIR, and EXECOPS,

which have matching compiler options. If you specify the compiler option, it has

precedence over the #pragma runopts directive.

When the runtime option EXECOPS is in effect, you can specify runtime options at

execution time, as previously described. These options override runtime options that

you compiled into the program by using the #pragma runopts directive.

The #pragma runopts directive can appear in any file: main, include, or source. You

can specify multiple runtime options per directive or multiple directives per

compilation unit. If you want to specify the ARGPARSE or REDIR options, the #pragma

runopts directive must be in the same compilation unit as main().

© Copyright IBM Corp. 2003, 2008 41

When you specify multiple instances of #pragma runopts in separate compilation

units, the compiler generates a CSECT for each compilation unit that contains a

#pragma runopts directive. When you bind multiple compilation units that specify

#pragma runopts, the binder takes only the first CSECT, thereby ignoring your other

option statements. Therefore, you should always specify your #pragma runopts

directive in the same source file that contains the function main().

For more information on the #pragma runopts preprocessor directive, see z/OS: XL

C/C++ Language Reference.

42 XL C/C++ for z/VM: User's Guide

Chapter 7. Compiling a C/C++ Program

This chapter describes how to compile your program using the XL C/C++ compiler

and Language Environment under VM/CMS. For information on compiling your

program under OpenExtensions, refer to Chapter 9, “Compiling a C/C++ Program

under OpenExtensions,” on page 69.

The XL C/C++ compiler analyzes the C/C++ source program and translates the

source code into machine instructions known as object code. You must have access

to the Language Environment C/C++ runtime library, because the compiler calls

functions in the library to compile the code.

Invoking the XL C/C++ Compiler

When you invoke the XL C/C++ compiler, the operating system automatically tries

to locate and execute the compiler. The location of the compiler is determined by

the system programmer who installed the product. The compiler may be in a

nucleus extension, in a discontiguous saved segment (DCSS), or on a minidisk. In

either instance, you only need to ensure that you have access to the C compiler

version that you want to use.

The XL C/C++ compiler can be invoked under VM/CMS using the IBM supplied CC

EXEC.

The XL C/C++ compiler compiles source code using the Language Environment.

You must ensure that the load libraries that contain XL C/C++, Language

Environment, and VM/CMS library routines are available. The runtime libraries are

needed for compilation, because the compiler calls functions from the libraries. The

GLOBAL command is used to link to the libraries. The libraries may be in a nucleus

extension, a DCSS, or in the GLOBAL LOADLIB list. For more information on how to

make libraries available for execution, refer to “Making the Runtime Libraries

Available for Execution” on page 66. The following examples assume that the

default names (which can be changed by the system programmer during

installation) are used.

GLOBAL Command for Using the Language Environment Library

The GLOBAL commands to make the library available to compile, bind, and run a

program are as follows:

v To run the compiler:

GLOBAL LOADLIB USERLIB SCEERUN

v To bind your C object code:

GLOBAL TXTLIB USERLIB SCEELKED

v To bind your C++ object code:

GLOBAL TXTLIB USERLIB SCEELKED SCEECPP

v To run your C or C++ module:

GLOBAL LOADLIB USERLIB SCEERUN

where USERLIB represents any user load or text libraries.

Note: The SCEECPP text library is part of Language Environment and contains the

base C++ link-edit routines.

© Copyright IBM Corp. 2003, 2008 43

Syntax of the CC EXEC

The syntax of the CC EXEC is:

��

�

 CC filename

,

(

options

 ��

filename

is the name of the source file to be compiled. The source file can be a CMS

record or BFS file.

options

specifies the compiler options to use during compilation. If no compiler options

are specified, the default settings are used.

 For a description of the compiler options that you can specify when invoking the

CC EXEC, refer to “Descriptions of Compiler Options” on page 23.

Specifying the Input File

Input for the compiler consists of:

v Your C/C++ source program

v C/C++ standard header files

v Your header files

The primary input to the compiler is the first argument passed to the CC exec. Your

C/C++ source may be in a CMS record or BFS file. The secondary input to the

compiler consists of files identified by #include preprocessor directives in the input.

For more information on #include files, see “Using Include Files” on page 49.

The output that the compiler generates is based on the primary source file input.

CMS Record Files

To specify a CMS record file as your primary source file, use the following syntax:

�� filename

filetype

filemode

 ��

You must always specify the source file name following the CC keyword. If the file

type is not C, the file type must also be specified on the CC EXEC. If you do not

specify the file mode, the currently accessed minidisks are searched in the standard

VM/CMS search order. The file that is compiled is the first one encountered in the

disk search. For example, if you have a file called TWICE C on both your B and Y

minidisks, and the Y minidisk is not accessed as an extension of the A disk, TWICE C

B is compiled if you do not specify the file mode. Note also that if you specify the

file mode, you must also specify the file type.

44 XL C/C++ for z/VM: User's Guide

BFS Files

You can also use the CC EXEC to compile source that is in BFS files. To specify a

BFS file as your primary source file, use the following syntax:

��

�

 ./ filename

../

/

/

pathname

 ��

./ specifies the current directory.

../ specifies the previous directory.

/ specifies the beginning of an absolute path name.

pathname

specifies all directories leading to the file.

filename

is the name of the source file.

 When you use the CC EXEC, you must use unambiguous BFS source file names.

For example, the compiler treats the following input files as BFS files:

CC ./test/hello.c

CC /u/david/test/hello.c

CC test/hello.c

CC ///hello.c

CC ../test/hello.c

KNOWN: - The file name is SALARY.

 - The file type is C.

 - The file mode is A.

USE THE FOLLOWING COMMAND:

 CC SALARY

Result: The object module generated will have file name

 SALARY, a file type of TEXT, and file mode A.

Figure 12. Specifying a CMS Record Input File under VM/CMS (Example 1)

KNOWN: - The file name is INCOME

 - The file type is NET

 - The file mode is Y

USE THE FOLLOWING COMMAND:

 CC INCOME NET Y

Result: The object module generated will have file name INCOME,

 a file type of NET, and file mode A.

Figure 13. Specifying a CMS Record Input File under VM/CMS (Example 2)

Chapter 7. Compiling a C/C++ Program 45

If filename is not in the pathname format with single slashes, the compiler treats the

file as non-BFS input. The following input files are treated as non-BFS files:

CC hello.c

CC //hello.c

For complete information on working with BFS files, see z/VM: OpenExtensions

User’s Guide.

For information on compiling programs under OpenExtensions, see Chapter 9,

“Compiling a C/C++ Program under OpenExtensions,” on page 69.

Specifying Compiler Options

There are many compiler options that you can specify when you compile using the

CC EXEC. They are described in “Descriptions of Compiler Options” on page 23.

The following examples show you how to override the default options when

compiling under VM/CMS. When you specify the options, separate them by at least

one blank; you can have any number of extra blanks. The order is unimportant. If

two contradictory options are specified, the last option specified is accepted and the

first ignored.

KNOWN: - The current working directory is /u/proga.

 - The file name is myprog.c.

USE THE FOLLOWING COMMAND:

 CC ./myprog.c

Result: The object module generated will be in the current

 working directory and have a file name

 myprog.o.

Figure 14. Specifying a BFS Input File under VM/CMS (Example 1)

KNOWN: - The file name is myprog.c in directory

 /u/boris/progs.

 - The current working directory is /u/proga.

USE THE FOLLOWING COMMAND:

 CC /u/boris/progs/myprog.c

Result: The object module generated will be myprog.o

 in the current working directory /u/proga.

Figure 15. Specifying a BFS Input File under VM/CMS (Example 2)

46 XL C/C++ for z/VM: User's Guide

CMS Record File Examples

BFS File Example

Creating Input Source Files

For CMS record files, the C/C++ compiler accepts both F-format and V-format

records. The primary and secondary input can have different formats. For

information on mixing formats, see the #pragma sections, margins and sequence in

z/OS: XL C/C++ Language Reference.

KNOWN: - The file being compiled is FINANCE EXPAND A.

 - A listing of the source file is required.

USE THE FOLLOWING COMMAND:

 CC FINANCE EXPAND (SOURCE

Result: A listing with the same file name as your source and

 a file type of LISTING is generated.

 When an error occurs, the compiler sends an error

 message to your terminal screen and to your source

Figure 16. Specifying Compiler Options under VM/CMS (Example 1)

KNOWN: - The file being compiled is BASEBALL C X.

 - The following disks are to be scanned for

 user include files:

 - V,W,X,Y, and Z (using the LSEARCH option)

 - S,T, and U (using the SEARCH option)

 - The following disks are to be scanned for

 system include files:

 - S,T,U,V,W,X,Y, and Z (using the SEARCH option)

USE THE FOLLOWING COMMAND:

 CC BASEBALL C X (LSEARCH(V) SEARCH(S)

Result: If the user include file is not found

 on one of the disks specified by the LSEARCH option,

 then the disks specified by the SEARCH option are

 searched for the user include file.

 The disks S through Z are scanned in the standard CMS search

 order for the system include file(s).

Figure 17. Specifying Compiler Options under VM/CMS (Example 2)

KNOWN: - The file being compiled is myprog.c in the

 current working directory /u/progs.

 - A listing of the source file is required.

USE THE FOLLOWING COMMAND:

 CC ./myprog.c (source

Result: A listing with the same file name as your source and

 a file extension of lst is generated in your

 current working directory.

Figure 18. Specifying Compiler Options for BFS Files

Chapter 7. Compiling a C/C++ Program 47

To assist you in migrating existing applications from other operating systems to

VM/CMS, file name conversions (described in the following sections) are performed

automatically by XL C/C++ These conversions affect file names specified on

#include preprocessor directives, and in file I/O library functions such as fopen.

See z/OS: XL C/C++ Language Reference for general information on the #include

directive and the available I/O functions.

For complete information on working with BFS files, see z/VM: OpenExtensions

User’s Guide.

Specifying Output Files

The compiler can generate the following kinds of output files:

v Object file

v Listing file

v Preprocessor output

v Events file

v Error message file

When you compile source, you can specify the resultant output file type by using

the following compiler options:

 Output File Type Compiler Option

Object File OBJECT(filename)

Listing File INLRPT(filename)

LIST(filename)

SOURCE(filename)

Preprocessor Output PPONLY(filename)

Events File EVENTS(filename)

When you specify any of these compiler options and do not use suboptions to

identify the output file names, the compiler generates default output file names

based on the type of source file being compiled. Output file names are the same as

the source file names. The default output CMS file types and BFS suffixes that the

compiler uses are summarized in Table 2.

 Table 2. Default CMS File Types and BFS Suffixes for Output Files

Output File CMS filename Type BFS filename Suffix

Object File TEXT o

Listing File LISTING lst

Preprocessor Output EXPAND i

Events File SYSEVENT err

If you compile source in a CMS record file without specifying output file names in

the compiler options, output files are generated on the A disk with the file type

shown in Table 2. For example,

 cc hello c

generates object file

 hello text

48 XL C/C++ for z/VM: User's Guide

If you compile source in a BFS file without specifying output file names in the

compiler options, output files are generated in the current directory with the suffix

shown in Table 2 on page 48. For example,

 cc /user/fred/hello.c

generates object file

 ./hello.o

Events file output is generated using the same file name as the source file and

stored on the user’s A disk using a file type of SYSEVENT.

Error messages are redirected to stderror if the TERMINAL option is in effect. Error

messages can be redirected to a file using the redirection technique, for example:

 CC A (>ERROR.LOG

Valid Input/Output File Types

Depending on the type of file that is used as primary input, certain output file types

are allowed. The following table describes these input and output file combinations:

 Table 3. Valid Combinations of Source and Output File Types

Input Source File Output File Specified Not In

filename Format, for example

A B C

Output specified as BFS file,

for example a/b/c.o

CMS Native File, for

example A B

1. If output file exists, overwrites

it

2. If output file does not exist,

creates the file

1. If the directory does not exist,

compilation fails

2. If the directory exists but the

file does not exist, creates

file

3. If the file exists, overwrites

the file.

BFS file, for

example /a/b/d.c

1. If file exists as a CMS record

file, overwrites it

2. If file does not exist, creates

output file

1. If the directory does not exist,

compilation fails

2. If the directory exists but the

file does not exist, creates

file

3. If the file exists, overwrites

the file.

Using Include Files

The #include preprocessor directive allows you to retrieve source statements from

secondary input files and incorporate them into your C/C+ program. A description of

the #include directive is provided in z/OS: XL C/C++ Language Reference. Its

syntax is:

�� #include < filename >

″

filename

″
 ��

Chapter 7. Compiling a C/C++ Program 49

Note: On previous compilers, the double slash at the beginning of filename

indicated a CMS file. This is not so for XL C/C++. If you specify it, the CMS

minidisks will NOT be searched.

Angle brackets (< >) are used to specify system include files, and double quotation

marks (″ ″) are used to specify user include files.

When you use the #include directive, you must be aware of:

1. The file-naming conversions performed by XL C/C++ See “Specifying #include

File Names” for more information on file name conversions performed by XL

C/C++.

2. The search order used by XL C/C++ to locate the file (known as the library

search sequence). See “Search Sequences for Include Files” on page 54 for

more information on the library search sequence.

3. The area of the input record containing sequence numbers when including files

with different record formats. See z/OS: XL C/C++ Language Reference for

more information on #pragma sequence.

Specifying #include File Names

You can use the SEARCH and LSEARCH compiler options to specify search paths for

system and user include files. For more information on these options, see

“LSEARCH | NOLSEARCH” on page 29 and “SEARCH | NOSEARCH” on page

34.

You can specify a file name using the syntax:

��

�

�

 / .

path

qualifier

DD:ddname

��

Notes:

1. Absolute CMS file names contain a file mode or are ddnames.

2. Absolute BFS file names begin with a leading slash (/) as the first character in

filename.

For more information on absolute file names, see “Determining If filename Is In

Absolute Form” on page 52.

When the compiler performs a library search, filename may be treated as a BFS file

name or a CMS file name. This depends on whether a CMS library or a BFS

directory is being searched. If filename is treated as a BFS file name, then no

conversions are performed on filename. If, on the other hand, filename is to be

treated as a CMS file name, then the following conversions are performed:

v For the first format:

50 XL C/C++ for z/VM: User's Guide

��

�

�

 / .

path

qualifier

��

The compiler performs name conversions in the following order:

1. All periods (.) are replaced with blank spaces.

2. Characters up to and including the rightmost slash (/) (if any slashes are

present) are deleted from the file specification.

3. The remaining file specification must be of the form:

�� filename

filetype

filemode

 ��

If there are more than three qualifiers, only the first three are used as the file

name, file type and file mode, beginning with the leftmost qualifier. The

remaining ones are ignored. If you specify the CHECKOUT(PPTRACE) compiler

option, a message states what include files the preprocessor is looking for.

4. All file names and file types are truncated to a maximum of eight characters.

File modes are truncated to two characters.

5. The file mode must be a valid CMS file mode, or an asterisk (*).

6. If a file mode is not specified, the currently accessed disks are searched in

the order described under “Search Sequences for Include Files” on page 54.

7. If a file type is not specified, the default is H.

v For the second format:

�� DD:ddname ��

1. DD: and ddname are uppercased and truncated to eight characters.

2. Invalid characters are not converted to at signs(@, hex 7c).

Table 4 gives the original format of the file name as specified on a #include

directive in a source file, and the actual file name used when XL C/C++ attempts to

locate and open the file.

 Table 4. Include Directive and Resulting File Names

#include Directive Resulting File Name

Comments

1 #include <stdio.h> STDIO H

2 #include <Shoe/Sale/Fall.D> FALL D

3 #include "cprog" CPROG H

4 #include "utility.h.a" UTILITY H A

If the file is not found on disk A, no further search is made.

Chapter 7. Compiling a C/C++ Program 51

Table 4. Include Directive and Resulting File Names (continued)

#include Directive Resulting File Name

Comments

5 #include "DD:MYSYS" file name on MYSYS DD

The file name associated with the ddname MYSYS will be used.

6 #include <DD:PLANLIB> file name on PLANLIB DD

The file name associated with the ddname PLANLIB will be used.

Determining If filename Is In Absolute Form

The compiler determines if the filename specified in #include is in absolute form as

shown in Figure 19.

�1� The compiler first checks whether the OE option is specified.

�2� If OE is specified, and filename starts with a slash (/), then filename is in

absolute form. The compiler opens the file directly as a BFS file.

�3� If OE is not specified, and the ddname format of the #include directive has

been used, the compiler uses the file associated with the given ddname

and directly opens the file. The ddname can point to a BFS file. The

libraries specified in the LSEARCH or SEARCH options are ignored.

�4� If none of the above conditions are true, then the filename is not in absolute

format and each opt in the LSEARCH or SEARCH compiler option determines if

the file is a BFS or CMS native file.

 For example:

start

Filename Filename

OE

DD /

Yes

Yes Yes

No

No Not absolute
CMS file

or BFS file

Absolute
CMS file

Absolute
BFS file

starts with starts with
No

1

3 24

Figure 19. Testing If filename Is In Absolute Form

52 XL C/C++ for z/VM: User's Guide

Options specified:

 OE

Include Directive:

 #include "apath/afile.h" NOT absolute, BFS/CMS (no starting slash)

 #include "/apath/afile.h" absolute BFS, (starts with 1 slash)

 #include "a.b.c" NOT absolute, BFS/CMS (no starting slash)

 #include "DD:SYSLIB" NOT absolute, BFS/CMS (no starting slash)

 #include "a.b" NOT absolute, BFS/CMS (no starting slash)

Using LSEARCH and SEARCH

When the filename in a #include directive is not in absolute format, the opts in

SEARCH are used to find system include files and the opts in LSEARCH are used

to find user include files. Each opt is a library path and its format determines if it is

a BFS or CMS path as shown in Figure 20.

�1� If opt is preceded by double slashes (//) and opt does not start with a slash

(/), then this path is a CMS path.

�2� If opt is preceded by double slashes (//) and opt starts with a slash (/), then

this path is a BFS path.

�3� If opt is not preceded by double slashes (//) and opt contains a slash (/),

then this path is a BFS path.

�4� If opt is not preceded by double slashes (//) and does not contain a slash

(/) and NOOE is specified, then this path is a non-BFS path.

LSEARCH/SEARCH

opt

opt

optOE

BFS
/

/ //

opt

CMS

Yes

Yes

YesYes

No

No

NoNo

path

inFor search

path

preceded
by

starts with

has
aspecified

1

35

2

4

Figure 20. Determining If LSEARCH/SEARCH opt Is BFS Path

Chapter 7. Compiling a C/C++ Program 53

For example:

 SEARCH(./PATH) is an explicit BFS path

OE SEARCH(PATH) is treated as a BFS path

NOOE SEARCH(PATH) is treated as a non-BFS path

OE SEARCH(//PATH) is an explicit non-BFS path.

When combining the library with the filename specified on the #include directive, it

is the form of the library that determines how the include filename is to be

transformed. For example:

Options specified:

 NOOE LSEARCH(Z, /u/myincs)

Include Directive:

 #include "apath/afile.h"

 Resulting fully qualified include names:

1. AFILE H Z (Z is non-BFS so filename is treated as non-BFS)

2. /u/myincs/apath/afile.h (/u/myincs is BFS so filename is treated as BFS)

The order of specification of the options on the LSEARCH/SEARCH option is the order

that is searched.

If no disk is specified, the file mode A will be added to the end of the

LSEARCH/SEARCH option.

See “LSEARCH | NOLSEARCH” on page 29 and “SEARCH | NOSEARCH” on

page 34 for more information on these compiler options.

Search Sequences for Include Files

With XL C/C++, you can specify a search path for locating secondary input files. To

specify the search path, you use the LSEARCH and SEARCH compiler options. For

details on these compiler options, refer to “LSEARCH | NOLSEARCH” on page 29

and “SEARCH | NOSEARCH” on page 34.

You can search any currently accessed disk or any MACLIB or BFS directory in any

order. By default, if there is no LSEARCH or SEARCH option specified, the disks will be

searched in the standard VM/CMS order.

If a user include file is not found on the disks or in the MACLIBs or BFS directories

specified by the LSEARCH option, the disks and MACLIBs named in the SEARCH option

are also scanned in the standard VM/CMS order. Only the disks and MACLIBs

specified in the SEARCH option are searched for system include files.

With the NOOE option in effect

Search Sequences for include files are used when the include file is not in absolute

form. See “Determining If filename Is In Absolute Form” on page 52 for a

description of the absolute form of an include file.

If the include filename is not absolute, then the compiler performs the library search

as follows:

54 XL C/C++ for z/VM: User's Guide

The search order for system include files is:

1. The search order as specified on the SEARCH option, if any

2. The standard CMS disk search, as long as no file mode was specified on the

SEARCH option.

The search order for user include files is:

1. The search order as specified on the LSEARCH option, if any

2. The standard CMS disk search, as long as no file mode was specified on the

LSEARCH option.

3. The search order for system include files.

For example:

CC ECONOMY (LSEARCH(X,(*.H)=(LIB(ALPHA.MACLIB))) SEARCH(V)

would result in the following search:

 Order of Search For System Include Files For User Include Files

First V X

Second W Y

Third X Z

Fourth Y ALPHA MACLIB (for *.H files)

Fifth Z V

Sixth W

With the OE option in effect

Search Sequences for include files are used when the include file is not in absolute

form. See “Determining If filename Is In Absolute Form” on page 52 for a

description of the absolute form of an include file.

If the include filename is not absolute then the compiler performs the library search

as follows:

v For system include files:

1. The search order as specified on the SEARCH option, if any

2. The standard CMS disk search, as long as no file mode was specified on the

SEARCH option.

v For user include files:

1. If the current source file is a BFS file, the directory of the current source file

2. The search order as specified on the LSEARCH option, if any

3. The standard CMS disk search, as long as no file mode was specified on the

LSEARCH option

4. The search order for system include files.

For example, given a file /r/you/cproc containing the following #include directives:

#include "/u/usr/header1.h"

#include "common/header2.h"

#include <header3.h>

And the following options:

OE(/u/crossi/myincs/cproc)

SEARCH(//V, "/new/inc1", "/new/inc2")

LSEARCH("/c/c1", "/c/c2")

Chapter 7. Compiling a C/C++ Program 55

Then the include files would be searched as follows:

 Table 5. Examples of Search Order for OpenExtensions

#include Directive Filename Files in Search Order

Example 1.

This is an absolute path name, so no search is performed.

#include "/u/usr/header1.h" 1. /u/usr/header1.h

Example 2.

This is an OpenExtensions system include file with a relative path name. The search starts

with the directory of the parent file or the name specified on the OE option if the parent is

the main source file (in this case the parent file is the main source file so the OE suboption

is chosen i.e. /u/crossi/myincs).

″common/header2.h″ 1. /u/crossi/myincs/common/header2.h

 2. /c/c1/common/header2.h

 3. /c/c2/common/header2.h

 4. HEADER2 H *

 5. HEADER2 H V

 6. HEADER2 H W

 7. HEADER2 H X

 8. HEADER2 H Y

 9. HEADER2 H Z

10. /new/inc1/common/header2.h

11. /new/inc2/common/header2.h

Example 3.

This is an OpenExtensions system include file with a relative path name. The search follows

the order of suboptions of the SEARCH option.

<header3.h> 1. HEADER3 H V

2. HEADER3 H W

3. HEADER3 H X

4. HEADER3 H Y

5. HEADER3 H Z

6. /new/inc1/common/header3.h

7. /new/inc2/common/header3.h

56 XL C/C++ for z/VM: User's Guide

Chapter 8. Binding and Running a C/C++ Program

This chapter gives an overview of how to bind and run C/C++ applications using

Language Environment under VM/CMS. If you are using OpenExtensions, see

Chapter 10, “Binding and Running a C/C++ Program under OpenExtensions,” on

page 73.

Language Environment provides a common runtime environment for C, COBOL,

and PL/I. For detailed instructions on binding and running existing and new C/C++

programs under Language Environment, see z/OS: Language Environment

Programming Guide.

The following examples describe how to bind and run a program under VM/CMS in

Language Environment. Use the following series of commands to:

1. Bind the C and/or C++ text files.

2. Make the Language Environment library available.

3. Run the load module.

To bind and run a C program:

To bind and run a C++ program:

Note: Information on Language Environment is reproduced here for convenience

only. For detailed information on Language Environment, see your Language

Environment documentation.

Library Routine Considerations

The Language Environment consists of one component that contains all Language

Environment enabled languages, such as C, COBOL, and PL/I.

The Language Environment is dynamic. That is, many of the functions available in

XL C/C++ are not physically stored as a part of your executable program. Instead,

only a small portion of code known as a stub routine is actually stored with your

executable program, and this results in a smaller executable module size. The stub

routines contain code that branches to the dynamically loaded Language

Environment routine.

CMOD MYPROG

GLOBAL LOADLIB SCEERUN

MYPROG

Figure 21. CMS Commands to Bind and Run a C Program

CMOD MYPROG (C++

GLOBAL LOADLIB SCEERUN

MYPROG

Figure 22. CMS Commands to Bind and Run a C++ Program

© Copyright IBM Corp. 2003, 2008 57

Creating an Executable Program

Compilation using the CC EXEC produces an object module with file type TEXT.

Further processing is required to produce an executable module. The simplest way

to do this is to use the IBM-supplied CMOD EXEC.

The CMOD EXEC uses either of the following methods to load one or more object

modules (file type TEXT) into virtual storage, resolve external references, and create

an executable module (file type MODULE) on disk:

v Invoke the Binder.

v Invoke the LOAD and GENMOD CMS commands (and optionally the prelinker).

Note: The Prelinker is not supported for use with XL C/C++.

The method used will depend first of all on the options specified on the CMOD EXEC.

Some CMOD options are Binder specific and some are LOAD/GENMOD/Prelinker

specific. If any Binder specific options are specified, CMOD will use the Binder. If any

LOAD/GENMOD/Prelinker specific options are specified, CMOD will use

LOAD/GENMOD/Prelinker. If both types of options are specified, the type specified

first will determine what CMOD uses. Warning messages will then be issued for the

other type. If no Binder specific or LOAD/GENMOD/Prelinker specific options are

specified, CMOD will check the value of the _CNAME environment variable in the CENV

group of GLOBALV. If this is set to CBXFINIT, which indicates that XL C/C++ is

being used, CMOD will use the Binder. Otherwise, it will use LOAD/GENMOD/
Prelinker. Refer to Table 6 on page 59 for more information on CMOD options.

Before using the CMOD EXEC, you should issue a GLOBAL TXTLIB for any user

libraries that contain objects that you want to include.

Note: If your application performs long double arithmetic, you must have the

CMSLIB TXTLIB available.

The general form of the CMOD EXEC is:

��

�

�

CMOD

textname

(

option

��

textname

is the name of an object module generated by the CC EXEC.

Note: The file containing the function main should be the first file named in the

CMOD EXEC. The compiler verifies that main exists by creating a special

CSECT that references main.

To specify the name of the executable module, use the MODNAME option of the CMOD

EXEC. The CMOD EXEC stores the executable module in a file specified on the

MODNAME option. If you do not explicitly name the file in which you want the

58 XL C/C++ for z/VM: User's Guide

executable module to be stored, the name of the first object module specified on

the CMOD EXEC will be used as the default.

Language Environment Sidedeck Files and TXTLIBs

The CMOD EXEC automatically sets up the appropriate GLOBAL TXTLIB commands

and accesses the appropriate sidedeck files to properly create both non-XPLINK

and XPLINK C and C++ programs. If you wish to create these without using the

CMOD EXEC, that is invoking the Binder yourself, you must also execute the

necessary GLOBAL TXTLIB commands prior to invoking the Binder and make the

necessary sidedeck files available as primary input to the Binder, as follows:

v For non-XPLINK C programs:

GLOBAL TXTLIB SCEELKED

Sidedeck file(s): none

v For XPLINK C programs:

GLOBAL TXTLIB SCEEBND2

Sidedeck file(s): CELHS003 CELHS001

v For non-XPLINK C++ programs:

GLOBAL TXTLIB SCEELKED SCEECPP

Sidedeck file(s): C128

v For XPLINK C++ programs:

GLOBAL TXTLIB SCEEBND2

Sidedeck file(s): CELHSCPP CELHS003 CELHS001 C128

The sidedeck files are on the Language Environment disk with a file type of TEXT.

CMOD Options

 Table 6. CMOD options

Option Description

Binder specific options

BINDOPTS(options) Specifies options for the Binder. These options may be any

of the options supported by the Binder. For complete

descriptions of these options, see z/VM: Program

Management Binder for CMS or z/OS MVS Program

Management: User’s Guide and Reference.

C++ Specifies that at least one of the text decks is C++. This

must be specified for C++ code to be correctly linked.

Chapter 8. Binding and Running a C/C++ Program 59

Table 6. CMOD options (continued)

Option Description

DLL(side_file_names) If a side file name is not specified, this just passes the

DYNAM DLL option to the Binder. It is the same as specifying

BINDOPTS(DYNAM DLL), which enables the module for

dynamic linking. A definition side file will be produced with

the same name as the first text deck name, and a file type

of SYSDEFSD.

If a side file name is specified, the DYNAM DLL option is still

passed to the Binder, but also the Binder will process the

definition side file specified. An 8-character CMS file name

is specified. CMOD will look for that file name with a file type

of SYSDEFSD. Multiple names can be specified, separated by

blanks.

For information about this option, see z/VM: Program

Management Binder for CMS or z/OS MVS Program

Management: User’s Guide and Reference.

For more information about DLLs (Dynamic Link Libraries),

see the section about building and using DLLs in z/OS: XL

C/C++ Programming Guide and the sections about binder

processing in z/OS: XL C/C++ User’s Guide.

XPLINK Specifies that the text deck(s) has been compiled with the

XPLINK option. Generally speaking, XPLINK text decks

cannot be bound with non-XPLINK text decks.

LOAD/GENMOD/Prelinker specific options

AMODE Specifies the addressing mode in which the program will be

entered in a virtual machine. For a complete description of

AMODE, see the LOAD command in z/VM: CMS Commands

and Utilities Reference.

AUTO|NOAUTO Specifies that your disks are to be searched for TEXT files

for use in resolving undefined references.

CPLINK(options) Specifies options for the Prelinker.

Note: The Prelinker is not supported for use with XL

C/C++.

DUP|NODUP Specifies that an error message is to be generated if

duplicate CSECT names are encountered. If you want to

ensure that only one copy of a object module is loaded, use

the NODUP option.

GENMOD(options) Passes any options to the GENMOD command.

INV|NOINV Specifies that invalid card images are not to be included in

the load map.

LET|NOLET Specifies that all LOAD errors for the load module are to be

ignored and an attempt to generate a module will be made.

ORIGIN Specifies where CMS loads the program. This location must

be in the CMS transient area or in any free CMS storage.

RLD|NORLD Specifies that relocation directory information is to be saved

in the load module.

STR|NOSTR Specifies that storage is to be initialized during the

generation of the executable module.

60 XL C/C++ for z/VM: User's Guide

Table 6. CMOD options (continued)

Option Description

RMODE Specifies where the program is to reside in a virtual

machine with greater than 16MB of storage. For a complete

description of RMODE, see the LOAD command in z/VM: CMS

Commands and Utilities Reference.

Common options

MAP|NOMAP The specified option is passed to the Binder or the LOAD

command. For MAP (which is the default), the Binder will

incorporate a module map into the SYSPRINT output (see

z/VM: Program Management Binder for CMS or z/OS MVS

Program Management: User’s Guide and Reference for

more information); the LOAD command will generate a load

map file on your A disk with the name LOAD MAP A.

MODNAME(modulename) The default is to generate an executable module having the

same file name as the first object module specified, a file

type of MODULE, and a file mode of A. The MODNAME option

allows you to give a specific name to the executable

module. If you specify this option, CMOD creates an

executable module named modulename MODULE A.

Examples

KNOWN: - Only one object module is to be loaded.

 - The object module to be loaded has file name

 PRODUCE, file type TEXT, and file mode A.

 - Default options and file names are to be used.

USE THE FOLLOWING COMMAND:

 CMOD PRODUCE

Note: File type and file mode are not specified on the CMOD EXEC.

Figure 23. Example 1 - Using the CMOD EXEC

KNOWN: - The two object modules to be loaded are:

 - GRAPHING TEXT A

 - TRIG TEXT A

 - GRAPHING TEXT A contains the main().

 - A load module map is to be generated.

 - The load module produced is to be called MATH MODULE A.

USE THE FOLLOWING COMMAND:

 CMOD GRAPHING TRIG (MODNAME(MATH) MAP

Figure 24. Example 2 - Using the CMOD EXEC

Chapter 8. Binding and Running a C/C++ Program 61

Using the LOAD and GENMOD Commands

Note: This method of creating an executable program cannot be used for C text

files that were compiled with either the LONGNAME or RENT options, or for C++

text files. These text files need to be processed by the binder to resolve

writable static references and/or map long internal names to short external

names.

The loader can also be invoked under VM/CMS by using the LOAD command

processor. For complete information about the LOAD, INCLUDE, and GENMOD

commands, see z/VM: CMS Commands and Utilities Reference.

Compilation using the CC command produces an object module with the file type

TEXT. To run the program, you must load the object module to form a load module

before you can execute it.

The LOAD command invokes the loader, which loads one or more object modules

and creates an executable module in virtual storage.

Note that the object modules you are loading with the LOAD command must have a

file type of TEXT. If you are loading several object modules, the file names must be

separated by at least one blank. You can also specify load options following the

input file names. If you want to specify more than one load option, the options must

be separated by blanks.

Default options for the LOAD command are described in z/VM: CMS Commands and

Utilities Reference.

The general form of the LOAD command is:

KNOWN: - Only one object module is to be loaded.

 - The object module to be loaded has file name

 DLLA07, file type TEXT, and file mode A.

 - The load module is to be a DLL

 - Default options and file names are to be used.

USE THE FOLLOWING COMMAND:

 CMOD DLLA07 (DLL

Note: A definition side file with name DLLA07 and type SYSDEFSD

 will be produced on the A disk.

Figure 25. Example 3 - Using the CMOD EXEC

KNOWN: - Only one object module is to be loaded.

 - The object module to be loaded has file name

 C955A07, file type TEXT, and file mode A.

 - C955A07 calls functions in the DLLA07 DLL.

 - There is a definition side file called DLLA07 SYSDEFSD.

 - Default options and file names are to be used.

USE THE FOLLOWING COMMAND:

 CMOD C955A07 (DLL(DLLA07)

Figure 26. Example 4 - Using the CMOD EXEC

62 XL C/C++ for z/VM: User's Guide

LOAD filename1 filename2 ... (options

Note: If the main program is C, you should include RESET CEESTART under the

options for the LOAD command. The object module that contains the main

must be the first one specified.

To store the executable module that was created by the loader in a file, use the

GENMOD command. The GENMOD command will take a copy of the executable module

in virtual storage and store it with the file name specified on the GENMOD command.

Only the file name is required on the GENMOD command.

The general form of the GENMOD command is:

GENMOD filename (options

Notes:

1. If you specify a file type, it must be MODULE.

2. If the main program is C, then under the options for the GENMOD command, you

should include FROM CEESTART.

If you do not explicitly name the file in which you want the load module to be

stored, the GENMOD command processor defaults to the name of the first entry point

in the load map. The following example shows you how to override the default to

produce a load module with a user-specified file name.

For more information on linking modules for interlanguage calls, see “Linking

Modules for Interlanguage Calls” on page 65.

Using the BIND Command

The BIND command invokes the z/VM Program Management Binder for CMS, which

encompasses the functionality of the Prelinker, the LKED command, and the LOAD

and GENMOD commands. In addition, it supports the Program Object format which is

required for some compiler options such as XPLINK.

The Prelinker is not supported for use with XL C/C++. Any C programs which use

the RENT or LONGNAME options, or any C++ programs must use the Binder to create

an executable module.

For more information about the Program Management Binder for CMS, see z/VM:

Program Management Binder for CMS and the sections about binder processing in

z/OS: XL C/C++ User’s Guide.

KNOWN: - Three object modules are to be loaded:

 - IMPORTS TEXT A

 - EXPORTS TEXT A

 - FORMULA TEXT A

 - The load module is to be called GNP MODULE A.

 - The main procedure is in IMPORTS.

 - Default options are to be used.

USE THE FOLLOWING COMMAND:

 GLOBAL TXTLIB SCEELKED CMSLIB

 LOAD IMPORTS EXPORTS FORMULA (RESET CEESTART

 GENMOD GNP (FROM CEESTART

Figure 27. Using the LOAD and GENMOD commands

Chapter 8. Binding and Running a C/C++ Program 63

Using the LKED Command

The LKED command is used to create a member of a CMS load library. CMS load

libraries, like text libraries, are in CMS partitioned data set formats. Text libraries

contain applications that contain unresolved external references to other routines.

Load libraries, on the other hand, contain applications with external references that

have already been resolved, thus saving overhead every time the application is

loaded.

Your TEXT file is input to the LKED command. If your application calls a subroutine

with object code stored as a separate TEXT file or as a member of a text library, you

must define the files that contain the subroutines used by your application with a

FILEDEF command.

After you issue the appropriate FILEDEF commands, issue the LKED command as

follows:

�� LKED filename

(

NAME

membname

(

NAME

membname

LIB

libname

(

LIB

libname

 ��

filename

is the name of the TEXT file that contains your object code and/or linkage editor

control cards.

NAME membname

specifies the member name to be used for the load module that is created.

LIB libname

specifies the name of the LOADLIB file where the resulting load module is

placed.

 The following example causes the automatic call library to search SCEELKED to

resolve external references, creates a load library member named PROGRAM1, and

stores it in a CMS load library with the name USERLOAD.

FILEDEF SYSLIB DISK SCEELKED TXTLIB E

LKED PROGRAM1 (NAME PROGRAM1 LIB USERLOAD

Using FILEDEF to Define Input and Output Files

If your program opens files by ddname (fopen("DD:INFILE","r");), you must issue

a corresponding FILEDEF prior to executing your program. The FILEDEF command

relates the ddname of the input or output file specified in your application with an

I/O device. For example, if PROGRAM1 contains a ddname of an input file stored on

your A disk as MYDATA INPUT, issue the following command:

 FILEDEF infile DISK MYDATA INPUT A

where infile is the ddname of the input file specified in PROGRAM1.

64 XL C/C++ for z/VM: User's Guide

Preparing a Reentrant Program

Reentrancy allows more than one user to share a single copy of a load module or

to repeatedly use a load module without reloading it.

Reentrant programs can be categorized by their reentrancy type as follows:

v Natural reentrancy - Programs that contain no writable static and do not require

additional processing to make them reentrant.

v Constructed reentrancy - Programs that contain writable static and require

additional processing to make them reentrant.

Note: All C++ programs use constructed reentrancy. They cannot be compiled with

the NORENT option.

Writable static is storage that changes and is maintained throughout program

execution. It is made up of:

v All program variables with the static storage class.

v All program variables receiving the extern storage class

v All writable strings

Note: If your program contains no writable strings and none of your static or extern

variables are updated in your application (that is, they are read only), your

program is naturally reentrant.

To generate a reentrant load module, you must follow these steps:

1. If your program contains writable static, you must compile all your C source files

using the RENT compiler option.

If you are unsure about whether your program contains writable static, compile it

with the RENT option. Invoking the Binder with the MAP option and the object

module as input produces a module map. Any writable static data in the object

module appears in the writable static section of the map.

2. Use the Binder to combine all input object modules into a single output object

module.

3. Optionally, do one of the following:

v Have your system programmer link/install your program into a discontiguous

saved segment (DCSS). For information about using saved segments, see

z/VM: Saved Segments Planning and Administration.

v Install your program as a nucleus extension by using the VM/CMS NUCXLOAD

command. For more information about the NUCXLOAD command, see z/VM:

CMS Commands and Utilities Reference.

You do not need to install your program to run but if you do not, you will not

gain all the benefits of reentrancy.

Linking Modules for Interlanguage Calls

For information on link-editing modules for interlanguage calls, see z/OS: Language

Environment Programming Guide.

Chapter 8. Binding and Running a C/C++ Program 65

Running a Program

Once you have compiled and loaded your C/C++ program, you can run it one of

two ways:

1. Using the file name of the load module. For example:

TESTRUN

2. Using the START command immediately after a LOAD or LOADMOD command. For

example:

LOADMOD TESTRUN

START

Making the Runtime Libraries Available for Execution

The Language Environment must be available at run time for your application to

use the dynamic library routines. The following sections describe how to make

these libraries available to your programs.

Making the Language Environment Library Available for VM/CMS

The C specific portions of the Language Environment are in modules CEEEV003,

CELHV003 and EDCZ24. CEEEV003 is the main C runtime module for non-XPLINK

programs, CELHV003 is the main C runtime module for XPLINK programs, and

EDCZ24 is the I/O routine module.

These can be loaded as nucleus extensions, discontiguous saved segments

(DCSSs), or directly from the Language Environment minidisk or directory. Nucleus

extensions and DCSSs offer improved performance.

Other portions of the Language Environment dynamic environment are on the

Language Environment minidisk or directory in the form of separate modules and

the SCEERUN loadlib. The modules can also be loaded as nucleus extensions or

DCSSs. The loadlib needs to be accessed with the GLOBAL LOADLIB command. For

example:

GLOBAL LOADLIB SCEERUN

Search Sequence for Library Files

The search order for the library files is:

1. Nucleus extension

2. Saved segment

3. LOADLIB

For best performance, the library should be loaded as a nucleus extension.

Specifying Runtime Options

Each time a C/C++ program is run, values must be established for a set of C/C++

runtime options. These options affect many of the properties of a C/C++ program’s

execution, including its performance, its error handling characteristics, and its

production of debugging and tuning information.

If the EXECOPS runtime option is in effect and if you want to specify additional

runtime options on the command line, specify the options, followed by a slash (/),

followed by the parameters you want to pass to the main function.

66 XL C/C++ for z/VM: User's Guide

If the NOEXECOPS runtime option is in effect, any arguments and options that you

specify on the command line (including the slash, if present) are passed as

arguments to the main function. Runtime options are described in “Specifying

Runtime Options” on page 41.

Each time the program is run, the default runtime options selected during C/C++

installation apply unless overridden by options specified in a #pragma runopts

directive in your source program or by command line options specified at the time

of program execution.

Runtime options are specified using the runopts pragma or in the parameter-string

on the command line when you invoke your C/C++ program. The parameter-string

contains two fields separated by a slash(/), and takes the form:

[runtime options/][parameter string]

The first field is passed to the program initialization routine as a runtime option list;

the second passes to the main function. If you do not specify any runtime options

but want to pass arguments, you must precede the arguments with a slash.

The following example shows you how to specify runtime options and pass

arguments when you invoke your program under VM/CMS.

Message Handling

By default, all C/C++ programs (including the compiler) set emsg off so that

VM/CMS messages generated during normal execution of C library functions are

not output to the terminal along with stdout and stderr. The C system function

restores the emsg setting, issues the given command in the system call, and sets

emsg off again.

Use the setenv() function to set emsg via the C environment variable

_EDC_KEEP_EMSG, as follows:

setenv("_EDC_KEEP_EMSG","Y",1);

This environment variable restores the emsg setting to its value prior to the

execution of the C program, and keeps that value while the program is running.

There are four ways to get XL C/C++ to leave the emsg setting on. This allows any

messages produced by VM/CMS during execution of your program to be displayed.

v Issue the CMS command GLOBALV SELECT CENV SET _EDC_KEEP_EMSG Y.

v Modify the user exit CEEBINT to issue a setenv("_EDC_KEEP_EMSG","Y",1) and link

this with your executable module.

KNOWN: - The load module to be executed is called SURVEY MODULE A.

 - You want to pass the words THIS IS A TEST to

 the program.

 - The messages generated by the runtime library

 will be received in Japanese.

USE THE FOLLOWING COMMAND:

 SURVEY LANG(JA)/THIS IS A TEST

Figure 28. Running under CMS

Chapter 8. Binding and Running a C/C++ Program 67

v Create a variable length file with a line of the following format. (Spaces are not

permitted.)

_EDC_KEEP_EMSG=Y

Create a FILEDEF EDCENV DISK fn ft fm for the same file. During initialization of

the root main program, XL C/C++ opens the file associated with the ddname

EDCENV and sets the appropriate environment variables.

v Issue a setenv("_EDC_KEEP_EMSG","Y",1) in your program. This restores emsg to

the value in effect when your program was invoked.

The environment variable may be set any time in a C program, or may be set in the

runtime user exit CEEBINT.

If the emsg setting is changed via a system() call once _EDC_KEEP_EMSG has been

set, then the new emsg setting will be maintained even after the C program

terminates.

For additional information on the setenv() library function, see XL C/C++ for z/VM:

Runtime Library Reference. For more information on environment variables, see

z/OS: XL C/C++ Programming Guide. Additional information on runtime user exits in

XL C/C++ is also available in z/OS: XL C/C++ Programming Guide.

68 XL C/C++ for z/VM: User's Guide

Chapter 9. Compiling a C/C++ Program under OpenExtensions

This chapter describes how to compile C/C++ programs under OpenExtensions

using the OpenExtensions c89 and cxx utilities. For detailed information regarding

the c89/cxx utility options and operands, see z/VM: OpenExtensions Commands

Reference.

The c89/cxx utilities call the XL C/C++ compiler. You must have access to the

Language Environment C/C++ runtime library, because the compiler calls functions

in the library to compile the code.

Compiling with c89/cxx

An OpenExtensions C/C++ application program with source code in BFS files or

CMS native files must be compiled to create output object files residing either in

BFS files or z/VM record files.

Application source code can be compiled and built at one time or compiled and

then bound at another time with other application source files or compiled objects.

To compile and build an OpenExtensions application program from the

OpenExtensions shell, use the c89 or cxx utility.

Note: All references to c89 also apply to cxx unless otherwise specified.

The syntax for cxx is the same as for c89. The syntax is:

c89 [-options ...] [file.c ...] [file.a ...] [file.o ...] [-l libname]

options

specifies one or more of the c89 options described in “c89 Selectable Compiler

Settings” on page 37.

file.c

specifies the name of the source file.

file.o

specifies the name of the object file.

file.a

specifies the name of the archive file.

libname

is name of the archive library.

Note: You can use the c89 utility to compile and build application program source

and objects from within the shell or directly from CMS. If you use c89, you

must keep track of and maintain all the source and object files for the

application program. However, you can take advantage of the make utility and

create makefiles to maintain your OpenExtensions application source and

object files automatically when you update individual modules. The make

utility runs c89 for you. However, make must be run from the shell.

For more information on using the make utility, see Chapter 15,

“OpenExtensions ar and make Utlities,” on page 109 and z/VM:

OpenExtensions Advanced Application Programming Tools.

© Copyright IBM Corp. 2003, 2008 69

To compile source files without binding them, enter the c89 command with the -c

option to create object file output. Use the -o option to specify placement of the

application program executable file to be generated. The placement of the

intermediate object file output depends on the location of the source file:

v If the C/C++ source module is a BFS file, the object file is created in the working

directory.

v If the C/C++ source module is a CMS native file, the object file is created as a

CMS native file. The object file is placed in the CMS minidisk or SFS directory

accessed as file mode A.

For example, if the C/C++ source is in a minidisk file named USERSRC C B, the

object is placed in the file USERSRC TEXT A. Because the CMS file ID is always

converted to uppercase, you can specify it in lowercase or mixed case.

v Compiling application source to produce only object files.

– To compile C/C++ source to create the default object file usersource.o in your

working BFS directory, specify:

 c89 -c usersource.c

– To compile C/C++ source to create an object file as a file on the A disk,

specify:

 c89 -c //approg.c

v Compiling and binding application source to produce an application executable

file.

– To compile an application source file to create the object file usersource.o in

the BFS working directory and the executable file mymod.out in the /app/bin

directory, specify:

 c89 -o /app/bin/mymod.out usersource.c

– To compile the C source file MAINBAL C on the B disk and build it to produce

the application executable file /u/parker/myappls/bin/mainbal.out, specify:

 c89 -o /u/parker/myappls/bin/mainbal.out //mainbal.c.b

Compiler Selection

By default, the c89 utility calls the XL C/C++ compiler (or the IBM C/C++ for z/VM

compiler, whichever is installed). If you had previously set c89 to call the IBM C for

VM/ESA compiler and want to change to the XL C/C++ compiler, issue the following

command to specify the C/C++ compiler module (CBXFINIT) on the _CNAME

environment variable in the CENV group of GLOBALV:

globalv select cenv setlp_cname cbxfinit

This will also cause c89 to call the Binder instead of the Prelinker.

To use the IBM C for VM/ESA compiler instead of the XL C/C++ compiler, you can

specify the C compiler module (CBC310) by issuing the following command:

globalv select cenv setlp_cname cbc310

The cxx utility ignores the setting of the _CNAME environment variable and always

calls the CBXFINIT module.

Compiling and Building in One Step with c89/cxx

To compile and build an OpenExtensions C/C++ application program in one step to

produce an executable file, specify the c89/cxx utility without specifying the -c

option.

70 XL C/C++ for z/VM: User's Guide

|
|
|
|
|

|

|
|

|

Note: To compile source files without building them, use the c89 -c option. This will

create object files only.

You can use the -o option with the command to specify the name and location of

the application program executable file to be created.

v To compile and build an application program source file to create the default

executable file a.out in the BFS working directory, specify:

 c89 usersource.c

v To compile and build an application source file to create the mymod.out

executable file in your /app/bin directory, specify:

 c89 -o /app/bin/mymod.out usersource.c

v To compile and build several application source files to create the mymod.out

executable file in your /app/bin directory, specify:

 c89 -o /app/bin/mymod.out usersource.c ottrsrc.c //pwapp.c

v To compile and build an application source file to create the MYLOADMD module file

on your A disk specify:

 c89 -o //myloadmd.module usersource.c

v To compile and build an application source file with a previously compiled object

file to create the executable file zinfo in your /approg/lib BFS directory, specify:

 c89 -o /approg/lib/zinfo usersource.c existobj.o //pwapp.c

Using the make Utility

You can use the OpenExtensions shell make utility to control your OpenExtensions

C/C++ application’s parts. The make utility calls the c89 utility by default to compile

and bind the programs specified in the previously created makefile.

The /etc/startup.mk file contains the make default rules.

For example, if you have the file /u/jake/appwrk/makefile.c that contains the

dependencies for your C application program primappl and you make changes to

the source file subordpgm.c, you can recompile the application by entering:

 cd appwrk

 make -f makefile.c

The result is the same as if you had entered:

 c89 -O -o primappl ./appwrk/subordpgm.c

Note: The OpenExtensions make utility requires that any application program

source files to be ″maintained″ through use of a makefile reside in BFS files.

To compile and build C/C++ source files that are in CMS native files you

must use the c89 utility directly.

For a description of the make utility, see z/VM: OpenExtensions Commands

Reference. For a detailed discussion on how to create and use makefiles to

manage application parts, see z/VM: OpenExtensions Advanced Application

Programming Tools.

Chapter 9. Compiling a C/C++ Program under OpenExtensions 71

72 XL C/C++ for z/VM: User's Guide

Chapter 10. Binding and Running a C/C++ Program under

OpenExtensions

This chapter describes how to bind and run C/C++ programs under

OpenExtensions.

The interfaces to the CMS module build facilities for OpenExtensions C/C++

applications are the OpenExtensions c89 and cxx utilities. You can use c89/cxx to

compile and build an OpenExtensions C/C++ application program in one step or

bind application object files after compilation. For more information on compiling

with the c89/cxx utility, refer to Chapter 9, “Compiling a C/C++ Program under

OpenExtensions,” on page 69.

Note: All references to c89 in the following sections also apply to cxx unless

otherwise specified.

Using the c89 Utility to Bind and Create Executable Files

To bind an OpenExtensions C/C++ application program’s object files to produce an

executable file, specify the c89 utility and pass it object files (file.o BFS files or

CMS native files). The c89 utility recognizes that these are object files produced by

previous C/C++ compilations and does not invoke the compiler for them.

To compile source files without binding them, use the c89 -c option to create object

files only.

You can use the -o option with the command to specify the name and location of

the application program executable file to be created.

v To bind an application program object file to create the default executable file

a.out in the working directory, specify:

 c89 usersource.o

v To bind an application object file to create the mymod.out executable file in the

app/bin directory, relative to your working directory, specify:

 c89 -o ./app/bin/mymod.out usersource.o

where usersource.o is the object file created by compilation with c89.

v To bind several application object files to create the mymod.out executable file in

the app/bin directory, relative to your working directory, specify:

 c89 -o ./app/bin/mymod.out usersrc.o othersrc.o

v To bind an application object file to create the MYLOADMD module file on the A disk

specify:

 c89 -o //myloadmd.module usersource.o

v To compile and bind an application source file with several previously compiled

object files to create the executable file zinfo in the approg/lib subdirectory,

relative to your working directory, specify:

 c89 -o ./approg/lib/zinfo usersrc.c existobj.o //pgmobj.text

c89 Binder Options

The c89 and cxx utilities specify default values for some Binder options. They also

pass Binder options by using the -W option. For more information on using the c89

options, see Chapter 5, “Compiler Options under OpenExtensions,” on page 37.

© Copyright IBM Corp. 2003, 2008 73

Binder Options

c89 uses the following Binder options, all of which can be overridden using the -W

option:

CASE MIXED TERM DISK

cxx uses the following Binder options:

CASE MIXED TERM DISK RENT DYNAM DLL

The following example shows how to use the -W option to pass a Binder option.

 c89 -Wb,b,map,case,upper hello.c

For more information about Binder options, see z/VM: Program Management Binder

for CMS or z/OS MVS Program Management: User’s Guide and Reference.

Specifying Runtime Options under OpenExtensions

If you have an OpenExtensions C/C++ application program executable file in the

byte file system (BFS), you cannot run the executable file by simply entering its

name on the CMS command line, as you would a traditional CMS application

program. Instead, you can execute the application by specifying its name on the

CMS command OPENVM RUN. However, OPENVM RUN does not support passing

of runtime options to the application.

Runtime options, needed for the OpenExtensions application program residing in

the BFS, can be passed from a #pragma runopts preprocessor directive at compile

time. When runtime options are specified in this way a CEEUOPT control section

(CSECT) is created and is linked with the application program by the c89 utility.

Because only one CEEUOPT CSECT can be linked with an application program, you

should code a #pragma runopts directive in the compilation unit for the main()

function. For more information about #pragma runopts, refer to “Runtime Options

Using Language Environment” on page 41.

Note: Also, you can create a CEEUOPT CSECT as a separate step using the CEEXOPT

macro and bind the CSECT with the application program object files using

c89.

Running under OpenExtensions

This section discusses how to run your OpenExtensions C/C++ application program

executable files on the z/VM system.

OpenExtensions Application Program Environments

OpenExtensions supports the following environments, from which you can run your

OpenExtensions C/C++ application programs:

v OpenExtensions shell

v CMS

Placing a CMS Application Program Load Module in the File System

If you have an OpenExtensions C/C++ application program executable file as a

CMS native file and want to place it in the BFS, you can use the following

OpenExtensions CMS commands to copy the file into a BFS file:

v OPENVM PUTBFS

74 XL C/C++ for z/VM: User's Guide

For a description of this command, see z/VM: OpenExtensions Commands

Reference. For examples of using this command to copy CMS files into BFS, see

z/VM: OpenExtensions User’s Guide.

Running a CMS Module from the OpenExtensions Shell

If your OpenExtensions C/C++ program is a CMS module file on a minidisk or in

the shared file system, you can invoke it from the shell by using the cms command.

For example, to run PROG1 MODULE A, execute the following command:

 cms prog1

If you want to make the module file transparent to the shell, you need to create an

external link in the BFS that points to the file. For example, to run PROG1 MODULE A,

you can create a file in the BFS that represents the module by using the following

command:

 openvm create extlink /u/mydir/prog1 cmsexec PROG1 MODULE A

You can run the module transparently from the shell by using the following

command:

 prog1

For more information on creating external links, see z/VM: OpenExtensions

Commands Reference.

Running an OpenExtensions XL C/C++ Application Executable File

from the OpenExtensions Shell

If the application executable file is a BFS file, you must either run it from the shell

interactively or invoke it indirectly through the CMS command OPENVM RUN.

Issuing the Executable Filename from the Shell

Before a BFS program can be run in the OpenExtensions shell, it must be given the

appropriate mode authority for a user or group of users to run it. You can update

the mode authority for an executable program file by using the chmod command.

See z/VM: OpenExtensions Commands Reference for the format and description of

chmod.

After you have updated the mode authority, enter the program name from the

OpenExtensions shell command line. For example, if you want to run the program

datcrnch from your working directory, you have the directory where the program

resides defined in your search path, and you are authorized to run the program,

enter:

 datcrnch

Issuing a Setup Shell Script Filename from the Shell

To run an OpenExtensions shell script that sets up an OpenExtensions executable

file and then runs the program, give the appropriate mode authority for a user or

group of users to run it. You can update the mode authority for a shell script file by

using the chmod command. See z/VM: OpenExtensions Commands Reference for

the format and description of chmod. After mode authority has been given, enter the

script filename from the OpenExtensions shell command line.

Chapter 10. Binding and Running a C/C++ Program under OpenExtensions 75

76 XL C/C++ for z/VM: User's Guide

Chapter 11. Object Library Utility

This chapter describes how to use the Object Library Utility to update libraries of

object files. On VM/CMS, a library is a text library (TXTLIB) with object files as

members.

Object libraries provide convenient packaging of object files. With the Object Library

Utility, a library can contain objects files compiled with long names, short names,

writable static data, or XPLINK. The Object Library Utility stores source member

symbol information with different attributes. This information is stored in two special

members of the library, the Basic Directory Member (@@DC370$) and the Enhanced

Directory Member (@@DC390$). Both are referred to in this chapter as the C370LIB

directory.

Note: The TXTLIB command under VM/CMS also creates object libraries but you

cannot include external names longer than 8 characters. The syntax for the

Object Library Utility is similar to the TXTLIB command.

Commands to add object files to a library, to delete object files from a library, or to

build the C370LIB directory for a library are available. Use the DIR command to build

the C370LIB directory for a library of object files. Use the MAP command to list the

contents of the C370LIB directory.

Creating an Object Library under VM/CMS

You use the C370LIB EXEC to create an object library.

��

�

�

�

 C370LIB

GEN

libname

fn

(FILENAME

ADD

libname

fn

(FILENAME

DEL

libname

membername

MAP

libname

DIR

libname

 ��

GEN

creates a TXTLIB on your A disk. If a TXTLIB with the same name already exists,

it is replaced.

ADD

adds TEXT files as members to an existing TXTLIB on a read/write disk. No

checking is done for duplicate names, entry points, or CSECTs.

© Copyright IBM Corp. 2003, 2008 77

DEL

deletes members from a TXTLIB on a read/write disk and compresses the

TXTLIB to remove unused space. If more than one member exists with the same

name, only the first entry is deleted.

MAP

lists the names (entry points) of TXTLIB members.

 MAP produces a file, libname MAP, on your A disk. See “Object Library Utility

Map” on page 80 for more information on the map.

DIR

builds the C370LIB directory. The C370LIB directory contains the names (entry

points) of library members.

 The DIR function is only necessary if TEXT files were previously added or

deleted from the TXTLIB without using C370LIB.

libname

specifies the file name of a file with a file type of TXTLIB, which can be one of

the following:

v Library to be created or listed

v Library to which members are to be added

v Library from which members are to be deleted

v Library for which a C370LIB directory is to be built

fn specifies one or more names of files with file types of TEXT, that you want to

add to a TXTLIB.

membername

specifies one or more names of TXTLIB members that you want to delete.

FILENAME

indicates that all the specified file names (fn ...) will be used as the member

names for their respective entries in the TXTLIB file.

 C370LIB must be used to update a TXTLIB with TEXT files produced by compiling C

programs with the LONGNAME option, or compiling C++ programs. The VM/CMS

TXTLIB command cannot be used to do this directly, and an error can result if this is

attempted.

When a TEXT file is added to a library, its member name is selected according to the

following hierarchy:

1. From the file name, if the FILENAME option is specified

2. From the NAME control statement, if present, in the TEXT file

3. From the file name.

The CMS TXTLIB command GEN, ADD, and DEL functions are used as part of the

C370LIB GEN, ADD and DEL functions. Thus, any TXTLIB restrictions apply also to

C370LIB unless otherwise stated. For information about the TXTLIB command, see

z/VM: CMS Commands and Utilities Reference.

Members must be deleted by their member name. Any attempt to delete a member

using a name other than the member name will result in a warning message.

78 XL C/C++ for z/VM: User's Guide

In the following example, the C programs SUB1 C and SUB2 C are compiled with the

LONGNAME option. The function library, SUBLIB TXTLIB A, is created with SUB1 TEXT

using the GEN command of C370LIB, the Object Library Utility. SUB2 TEXT is added to

the library using the ADD command.

 CC SUB1 (LO

 CC SUB2 (LO

 C370LIB GEN SUBLIB SUB1

 C370LIB ADD SUBLIB SUB2

LINKLOAD EXEC

The IBM-supplied LINKLOAD EXEC will generate a fetchable member of a VM/CMS

load library.

��

�

�

LINKLOAD

textfile

(

LIB

libname

option

��

textfile

specifies one or more names of the input text files. The file type of the object

files must be TEXT, and the source programs must have contained a #pragma

linkage(name,FETCHABLE) preprocessor directive. Note that you do not specify

the file type or the file mode when using the LINKLOAD EXEC.

libname

specifies the name of the library where the load member is to be stored.

option

specifies the options you want to apply when you are generating the fetchable

load library member:

MBR Specifies that the next argument, memname, is the name of the

member within the load library that is to be generated. If you do

not specify a member name, the name of the text file containing

the fetchable code is used.

CPLINK options

Passes options to the Prelinker. CPLINK is called if it is required

by the text file or if a CPLINK option is given.

Note: The Prelinker is not supported for use with XL C/C++.

LKED Specifies that the options following it are to be passed to LKED.

If you do not use this option, default options are used.

Only one of the following options can be specified on a given invocation of

LINKLOAD:

ADD Specifies that the load member generated by the LINKLOAD

EXEC is to be added to the load library. If a member by the

same name already exists, the new member will not be added.

REPLACE Specifies that the load member generated by the LINKLOAD

Chapter 11. Object Library Utility 79

EXEC is to replace the member having the same name in the

load library. If a member by the same name does not exist, the

new member is added.

NEW Specifies that if a load library of the given name exists, then it

is erased, and a new load library containing the new member is

created.

Object Library Utility Map

The Object Library Utility produces a listing for a given library when the MAP

command is specified. The listing contains information on each member of the

library.

 ==

 �1�| Object Library Utility Map |

 | |

 |C370LIB:5647A01 V2 R10 M0 IBM Language Environment 2001/01/03 15:10:51|

 ==

 Library Name: FRANK.A.OBJLIB

 --

 �2�* Member Name: CGOFF (P) 2001/00/00 13:51:23 *

 * 5647A01 V2 R10 *

 --

 �3� User Comment:

 AGGRCOPY(NOOVERLAP) NOALIAS ANSIALIAS ARCH(2) ARGPARSE NOCOMPACT

 NOCOMPRESS NOCONVLIT CSECT() NODLL(NOCALLBACKANY) EXECOPS NOEXPORTALL

 FLOAT(HEX, FOLD, NOAFP) GOFF NOGONUMBER NOHWOPTS NOIGNERRNO NOINITAUTO

 NOINLINE NOIPA LANGLVL(*EXTENDED) NOLIBANSI NOLOCALE LONGNAME

 MAXMEM(2097152) OPTIMIZE(0) PLIST(HOST) REDIR RENT NOROCONST NOROSTRING

 NOSERVICE SPILL(128) START STRICT NOSTRICT_INDUCTION

 TARGET(LE, OSV2R10) NOTEST TUNE(3) NOUPCONV NOXPLINK COMPILED_ON_MVS

 �4� (L) Function Name: CSTUFF#C

 (WL) External Name: this_int_is_in_writable_static_and_its_name_wi

 ll_warp_because_it_is_too_long

 (L) Function Name: foo

 (WL) External Name: CSTUFF#T

 (WL) External Name: CSTUFF#S

 --

 * Member Name: CPPIPANO (P) 2001/01/03 15:10:51 *

 * 5647A01 V2 R10 *

 --

 User Comment:

 AGGRCOPY(NOOVERLAP) ANSIALIAS ARCH(2) ARGPARSE NOCOMPACT NOCOMPRESS

 NOCONVLIT NOCSECT CVFT DLL(NOCALLBACKANY) EXECOPS NOEXPORTALL

 FLOAT(HEX, FOLD, NOAFP) NOGOFF NOGONUMBER NOIGNERRNO NOINITAUTO

 IPA(NOLINK, NOOBJECT, COMPRESS, OPTIMIZE, NOGONUM) LANGLVL(EXTENDED)

 NOLIBANSI NOLOCALE LONGNAME MAXMEM(2097152) NOOPTIMIZE PLIST(HOST)

 REDIR NOROCONST ROSTRING ROUND(Z) NOSERVICE SPILL(128) START STRICT

 NOSTRICT_INDUCTION TARGET(LE, OSV2R10) NOTEST(HOOK) TUNE(3) NOXPLINK

 COMPILED_ON_MVS

 (I L) Function Name: testeh()

 (I L) Function Name: f1()

 (I L) Function Name: a()

 (I L) Function Name: A::areallyreallyreallyreallyreallyreallyreally

 longnamefunction()

 (I L) Function Name: A::operator+=(int)

 (I L) Function Name: A::x()

 (I L) External Name: i1

80 XL C/C++ for z/VM: User's Guide

(I L) External Name: i2

 --

 * Member Name: CPPIPAO (P) 2001/01/03 15:10:51 *

 * 5647A01 V2 R10 *

 --

 User Comment:

 of IPA OBJECT AGGRCOPY(NOOVERLAP) ANSIALIAS ARCH(2) ARGPARSE NOCOMPACT

 NOCOMPRESS NOCONVLIT NOCSECT CVFT DLL(NOCALLBACKANY) EXECOPS

 NOEXPORTALL FLOAT(HEX, FOLD, NOAFP) NOGOFF NOGONUMBER NOIGNERRNO

 NOINITAUTO IPA(NOLINK, OBJECT, COMPRESS, OPTIMIZE, NOGONUM)

 LANGLVL(EXTENDED) NOLIBANSI NOLOCALE LONGNAME MAXMEM(2097152)

 NOOPTIMIZE PLIST(HOST) REDIR NOROCONST ROSTRING ROUND(Z) NOSERVICE

 SPILL(128) START STRICT NOSTRICT_INDUCTION TARGET(LE, OSV2R10)

 NOTEST(HOOK) TUNE(3) NOXPLINK COMPILED_ON_MVS of OBJECT

 (L) Function Name: testeh()

 (L) Function Name: f1()

 (L) Function Name: a()

 (L) Function Name: A::areallyreallyreallyreallyreallyreallyreally

 longnamefunction()

 (L) Function Name: A::operator+=(int)

 (L) Function Name: A::x()

 (WL) External Name: i1

 (WL) External Name: i2

 --

 * Member Name: CPPIPAOB (P) 2001/01/03 15:10:51 *

 * 5647A01 V2 R10 *

 --

 User Comment:

 AGGRCOPY(NOOVERLAP) ANSIALIAS ARCH(2) ARGPARSE NOCOMPACT NOCOMPRESS

 NOCONVLIT NOCSECT CVFT DLL(NOCALLBACKANY) EXECOPS NOEXPORTALL

 FLOAT(HEX, FOLD, NOAFP) NOGOFF NOGONUMBER NOIGNERRNO NOINITAUTO

 IPA(NOLINK, OBJONLY, COMPRESS, OPTIMIZE, NOGONUM) LANGLVL(EXTENDED)

 NOLIBANSI NOLOCALE LONGNAME MAXMEM(2097152) NOOPTIMIZE PLIST(HOST)

 REDIR NOROCONST ROSTRING ROUND(Z) NOSERVICE SPILL(128) START STRICT

 NOSTRICT_INDUCTION TARGET(LE, OSV2R10) NOTEST(HOOK) TUNE(3) NOXPLINK

 COMPILED_ON_MVS of OBJECT

 (L) Function Name: testeh()

 (L) Function Name: f1()

 (L) Function Name: a()

 (L) Function Name: A::areallyreallyreallyreallyreallyreallyreally

 longnamefunction()

 (L) Function Name: A::operator+=(int)

 (L) Function Name: A::x()

 (WL) External Name: i1

 (WL) External Name: i2

 --

 * Member Name: CPPXPLNK (P) 2001/00/00 13:51:25 *

 * 5647A01 V2 R10 *

 --

 User Comment:

 AGGRCOPY(NOOVERLAP) ANSIALIAS ARCH(2) ARGPARSE NOCOMPACT NOCOMPRESS

 NOCONVLIT CSECT(CODE, CPPSTUFF#C) CSECT(STATIC, CPPSTUFF#S)

 CSECT(TEST, CPPSTUFF#T) CVFT DLL(NOCALLBACKANY) EXECOPS NOEXPORTALL

 FLOAT(HEX, FOLD, NOAFP) GOFF NOGONUMBER NOIGNERRNO NOINITAUTO NOIPA

 LANGLVL(EXTENDED) NOLIBANSI NOLOCALE LONGNAME MAXMEM(2097152)

 NOOPTIMIZE PLIST(HOST) REDIR NOROCONST ROSTRING ROUND(Z) NOSERVICE

 SPILL(128) START STRICT NOSTRICT_INDUCTION TARGET(LE, OSV2R10)

 NOTEST(HOOK) TUNE(3) XPLINK COMPILED_ON_MVS

Chapter 11. Object Library Utility 81

(X L) Function Name: testeh()

 (X L) Function Name: f1()

 (X L) Function Name: a()

 (X L) Function Name: A::areallyreallyreallyreallyreallyreallyreally

 longnamefunction()

 (X L) Function Name: A::operator+=(int)

 (X L) Function Name: A::x()

 (WL) External Name: i1

 (WL) External Name: i2

 (X L) Function Name: CPPSTUFF#C

 (WL) External Name: CPPSTUFF#T

 (WL) External Name: CPPSTUFF#S

 --

 * Member Name: CXOBJ (P) 2001/01/03 15:10:51 *

 * 5647A01 V2 R10 *

 --

 User Comment:

 AGGRCOPY(NOOVERLAP) NOALIAS ANSIALIAS ARCH(2) ARGPARSE NOCOMPACT

 NOCOMPRESS NOCONVLIT NOCSECT NODLL(NOCALLBACKANY) EXECOPS NOEXPORTALL

 FLOAT(HEX, FOLD, NOAFP) NOGOFF NOGONUMBER NOHWOPTS NOIGNERRNO

 NOINITAUTO NOINLINE NOIPA LANGLVL(*EXTENDED) NOLIBANSI NOLOCALE

 LONGNAME MAXMEM(2097152) OPTIMIZE(0) PLIST(HOST) REDIR RENT NOROCONST

 NOROSTRING NOSERVICE SPILL(128) START STRICT NOSTRICT_INDUCTION

 TARGET(LE, OSV2R10) NOTEST TUNE(3) NOUPCONV NOXPLINK COMPILED_ON_MVS

 (WL) External Name: this_int_is_in_writable_static_and_its_name_wi

 ll_warp_because_it_is_too_long

 (L) Function Name: foo

 ==

 | Symbol Definition Map |

 ==

 --

 | Symbol name: CSTUFF#C |

 --

 From member: CGOFF Type: Function (L)

 --

 | Symbol name: this_int_is_in_writable_static_and_its_name_will_warp_ |

 | because_it_is_too_long |

 --

 From member: CGOFF Type: External (WL)

 From member: CXOBJ Type: External (WL)

 --

 | Symbol name: foo |

 --

 From member: CGOFF Type: Function (L)

 From member: CXOBJ Type: Function (L)

 --

 | Symbol name: CSTUFF#T |

 --

 From member: CGOFF Type: External (WL)

 --

82 XL C/C++ for z/VM: User's Guide

| Symbol name: CSTUFF#S |

 --

 From member: CGOFF Type: External (WL)

 --

 | Symbol name: testeh() |

 --

 From member: CPPIPAO Type: Function (L)

 From member: CPPIPAOB Type: Function (L)

 From member: CPPXPLNK Type: Function (X L)

 From member: CPPIPANO Type: Function (I L)

 --

 | Symbol name: f1() |

 --

 From member: CPPIPAO Type: Function (L)

 From member: CPPIPAOB Type: Function (L)

 From member: CPPXPLNK Type: Function (X L)

 From member: CPPIPANO Type: Function (I L)

 --

 | Symbol name: a() |

 --

 From member: CPPIPAO Type: Function (L)

 From member: CPPIPAOB Type: Function (L)

 From member: CPPXPLNK Type: Function (X L)

 From member: CPPIPANO Type: Function (I L)

 --

 | Symbol name: A::areallyreallyreallyreallyreallyreallyreallylongname |

 | function() |

 --

 From member: CPPIPAO Type: Function (L)

 From member: CPPIPAOB Type: Function (L)

 From member: CPPXPLNK Type: Function (X L)

 From member: CPPIPANO Type: Function (I L)

 --

 | Symbol name: A::operator+=(int) |

 --

 From member: CPPIPAO Type: Function (L)

 From member: CPPIPAOB Type: Function (L)

 From member: CPPXPLNK Type: Function (X L)

 From member: CPPIPANO Type: Function (I L)

 --

 | Symbol name: A::x() |

 --

 From member: CPPIPAO Type: Function (L)

 From member: CPPIPAOB Type: Function (L)

 From member: CPPXPLNK Type: Function (X L)

 From member: CPPIPANO Type: Function (I L)

 --

 | Symbol name: i1 |

 --

 From member: CPPIPAO Type: External (WL)

Chapter 11. Object Library Utility 83

From member: CPPIPAOB Type: External (WL)

 From member: CPPXPLNK Type: External (WL)

 From member: CPPIPANO Type: External (I L)

 --

 | Symbol name: i2 |

 --

 From member: CPPIPAO Type: External (WL)

 From member: CPPIPAOB Type: External (WL)

 From member: CPPXPLNK Type: External (WL)

 From member: CPPIPANO Type: External (I L)

 --

 | Symbol name: CPPSTUFF#C |

 --

 From member: CPPXPLNK Type: Function (X L)

 --

 | Symbol name: CPPSTUFF#T |

 --

 From member: CPPXPLNK Type: External (WL)

 --

 | Symbol name: CPPSTUFF#S |

 --

 From member: CPPXPLNK Type: External (WL)

 ========= E N D O F O B J E C T L I B R A R Y M A P ==========

�1� Map Heading

The heading contains the product number, the library version and release

number, and the date and the time the Object Library Utility step began.

The name of the library immediately follows the heading. To the right of the

library name is the start time of the last Object Library Utility step that

updated the Object Library Utility-directory.

�2� Member Heading

The product number of the processor that produced the object file follows

the name of the object file member. If the END record in the object file does

not have the processor information in the appropriate format, the Processor

ID field does not appear.

 The Timestamp field appears in yyyy/mm/dd format. A letter that is enclosed

in parentheses indicates the meaning of the timestamp. That is, the Object

Library Utility retains a timestamp for each member and selects the time

according to the following hierarchy:

(P) Indicates that the timestamp is extracted from the object file from

the date form or the timestamp form of #pragma comment, whichever

comes first.

(D) Indicates that the timestamp is based on the time that the Object

Library Utility DIR command was last issued.

(T) Indicates that the timestamp is the time that the ADD command was

issued for the member.

�3� User Comments

Displays the user form of comments that #pragma comment generated.

These comments are extracted from the END record. You can add such

84 XL C/C++ for z/VM: User's Guide

comments on multiple END records and have them displayed in the listing.

For more information on the END record, see z/OS: XL C/C++ Language

Reference.

�4� Symbol Information

Immediately following Member Heading and user comments is a list of the

defined objects that the member contains. Each symbol is prefixed by Type

information that is enclosed in parentheses and either External Name or

Function Name. Function Name will appear, provided the object file was

compiled with the LONGNAME option and the symbol is the name of a defined

external function. In all other cases, External Name is displayed. The Type

field gives additional information on each symbol. That is:

’L’ Indicates that the name is a long name. An long name is an

external C++ name in an object file or an external non-C++ name in

an object file produced by compiling with the LONGNAME option.

’S’ Indicates that the name is a short name. A short name is an

external non-C++ name in an object file produced by compiling with

the NOLONGNAME option. Such a name is up to 8 characters long and

single case.

’W’ Indicates that this is a writable static object. If it is not present, then

this is not a writable static object.

’X’ Indicates that the name is compiled XPLINK.

Note: WL indicates that the symbol is both a long name and in writable

static.

Chapter 11. Object Library Utility 85

86 XL C/C++ for z/VM: User's Guide

Chapter 12. Filter Utility

This chapter describes how to use the CXXFILT utility to convert mangled names to

demangled names.

When XL C/C++ compiles a C++ program, it has the ability to encode function

names. It also has the ability to encode other identifiers to include type and scoping

information. This encoding process is called mangling. Mangled names ensure

type-safe linking.

Use the CXXFILT utility to convert these mangled names to demangled names. The

utility copies the characters from either a given file or from standard input, to

standard output. It replaces all mangled names with their corresponding demangled

names.

The CXXFILT utility demangles any of the following classes of mangled names when

the appropriate options are specified.

regular names Names that appear within the context of a function

name or a member variable. For example, the

mangled name __ls__7ostreamFPCc is demangled

as ostream::operator<<(const char*).

class names Includes stand-alone class names that do not

appear within the context of a function name or a

member variable. For example, the stand-alone

class name Q2_1X1Y is demangled as X::Y.

special names Special compiler-generated class objects. For

example, the compiler-generated symbol name

__vft1X is demangled as X::virtual-fn-table-ptr.

The CXXFILT utility is run under VM/CMS by using the CXXFILT EXEC. The syntax

of the CXXFILT command is:

��

�

 CXXFILT

filename

,

(

option

 ��

filename

is the name of the file that contain the mangled names to be demangled. If you

specify no file name, CXXFILT reads from stdin.

option

is the name of a CXXFILT option to be used. If you specify no options,

NOSYMMAP, NOSIDEBYSIDE, NOWIDTH, REGULARNAME,

NOCLASSNAME, and NOSPECIALNAME are used by default.

© Copyright IBM Corp. 2003, 2008 87

CXXFILT Options

SYMMAP | NOSYMMAP

DEFAULT: NOSYMMAP

The SYMMAP option produces a symbol map on standard output. The map

contains a list of the mangled names and their corresponding demangled names.

The map displays only the first 40 bytes of each demangled name and truncates

the rest. Mangled names are not truncated.

If an input mangled name does not have a demangled version, the symbol mapping

does not display it.

The symbol mapping is displayed after the end of the input stream is encountered,

and after CXXFILT terminates.

SIDEBYSIDE | NOSIDEBYSIDE

DEFAULT: NOSIDEBYSIDE

The SIDEBYSIDE option displays each mangled name that is encountered in the

input stream beside its corresponding demangled name. If you do not specify this

option, then only the demangled names are printed. In either case, trailing

characters in the input name that are not part of a mangled name appear next to

the demangled name. For example, if an extraneous xxxx is input with the mangled

name pr__3FOOF, then the SIDEBYSIDE option would produce this result:

 FOO::pr() pr__3FOOFvxxxx

WIDTH(width) | NOWIDTH

DEFAULT: NOWIDTH

The WIDTH option prints demangled names in fields, width characters wide. If the

name is shorter than width, it is padded on the right with blanks; if longer, it is

truncated to width. The value of width must be greater than 0. If width is greater

than the record width, then the output is wrapped.

REGULARNAME | NOREGULARNAME

DEFAULT: REGULARNAME

The REGULARNAME option demangles regular names such as pr__3FOOFv. The

mangled name that is supplied to CXXFILT is treated as a regular name by default.

Specifying the NOREGULARNAME option will turn the default off. For example, specifying

the CLASSNAME option without the NOREGULARNAME option will cause CXXFILT to treat

the mangled name as either a regular name or standalone class name.

CLASSNAME | NOCLASSNAME

DEFAULT: NOCLASSNAME

The CLASSNAME option demangles standalone class names such as Q2_1X1Y.

To request that the mangled names be treated as standalone class names only, and

never as a regular name, use both CLASSNAME and NOREGULARNAME.

88 XL C/C++ for z/VM: User's Guide

SPECIALNAME | NOSPECIALNAME

DEFAULT: NOSPECIALNAME

The SPECIALNAME option demangles special names, such as compiler-generated

symbol names, for example __vft1X.

To request that the mangled names be treated as special names only, and never as

regular names, use CXXFILT (SPECIALNAME NOREGULARNAME.

Unknown Type of Name

If you cannot specify the type of name, use CXXFILT (SPECIALNAME CLASSNAME. This

causes CXXFILT to attempt to demangle the name in the following order:

1. Regular name

2. Standalone class name

3. Special name

Running CXXFILT under VM/CMS

The CXXFILT EXEC accepts input by two methods: from stdin or from a file.

With the first method, enter names after invoking CXXFILT. You can specify one or

more names on one or more lines. The output is displayed after you press Enter.

Names that are successfully demangled, as well as those which are not demangled,

are displayed in the same order as they were entered. To indicate end of input,

enter /*.

In the following example, CXXFILT treats mangled names as regular names,

produces a symbol mapping, and uses a field width 32 characters wide.

 user> CXXFILT (SYMMAP WIDTH(32)

 user> pr__3FOOFvxxxx

 reply< FOO::pr() xxxx

 user> __ls__7ostreamFPCc

 reply> ostream::operator<<(const char*)

 user> __vft1X

 reply> X::virtual-fn-table-ptr

 user> /*

 reply> C++ Symbol Mapping

 reply> demangled mangled

 reply> --------- -------

 reply>

 reply> FOO::pr() pr__3FOOFv

 reply> ostream::operator<<(const char*) __ls__7ostreamFPCc

 reply> X::virtual-fn-table-ptr __vft1X

Notes:

1. Because the trailing characters xxxx in the input name pr__3FOOFvxxxx are not

part of a valid mangled name, and the SIDEBYSIDE option is not on, the trailing

characters are not demangled.

In the symbol mappings, the trailing characters xxxx are not displayed.

2. The symbol mapping is displayed only after /* requests CXXFILT termination.

The second method of giving input to CXXFILT is to supply it in a file. CXXFILT

supports fixed and variable file record formats. Each line of the file can have one or

more names separated by space. In the example below, mangled names are

treated either as regular names or as special names (the special names are

Chapter 12. Filter Utility 89

compiler-generated symbol names). Demangled names are printed in fields 35

characters wide, and output is in side-by-side format.

NAMES FILE contains the following two mangled names:

 pr__3FOOFv

 __vft1X

Entering the following command:

 CXXFILT NAMES FILE (SPECIALNAME WIDTH(35) SIDEBYSIDE

produces the following output:

 FOO::pr() pr__3FOOFv

 X::virtual-fn-table-ptr __vft1X

CXXFILT terminates when it reads the end-of-file.

90 XL C/C++ for z/VM: User's Guide

Chapter 13. DSECT Conversion Utility

This chapter describes how to use the DSECT conversion utility.

The DSECT conversion utility generates a C structure to map an assembler DSECT.

This utility is used when a C program calls or is called by an Assembler program

and a C structure is required to map the area passed.

The source for the assembler DSECT is assembled using the High-Level Assembler

specifying the ADATA option. (See IBM High Level Assembler Programmer's Guide

for a description of the ADATA option.) The DSECT utility then reads the SYSADATA file

produced by the High Level Assembler and produces a file containing the C

structure according to the options specified.

The DSECT utility is run under VM/CMS by using the CDSECT EXEC. The syntax of

the CDSECT command is:

��

�

�

 CDSECT sname

(

option

ASM

asmopts

 ��

sname

is the file name of the assembler source program containing the required

section.

options

are any valid DSECT utility options.

ASM asmopts

specifies High Level Assembler options. The ADATA option is specified by

default.

 When the CDSECT command is executed, the High Level Assembler is executed with

the required options. The DSECT utility is then executed with the specified options. A

report is produced in file sname DMAP A1. The C structure produced is written to a

file sname STRUCT A1 unless the OUTPUT option is specified.

KNOWN: - The assembler source name is TESTASM ASSEMBLE A.

 - The required DSECT Utility options are EQU(BIT).

USE THE FOLLOWING COMMAND:

 CDSECT TESTASM (EQU(BIT)

Figure 29. Running the DSECT Utility under CMS

© Copyright IBM Corp. 2003, 2008 91

If the assembler source requires macros or copy members from a MACLIB, issue

the GLOBAL MACLIB command to set up the required MACLIBs before issuing the

CDSECT command.

DSECT Utility Options

The options that you can use to control the generation of the C structure are as

follows. You can specify them in uppercase or lowercase, separating them by

spaces or commas.

 Table 7. DSECT Utility Options, Abbreviations, and IBM-Supplied Defaults

DSECT Utility Option Abbreviated Name IBM Supplied Default

SECT[(name,...)] None SECT(ALL)

BITF0XL|NOBITF0XL BITF|NOBITF NOBITF0XL

COMMENT[(delim,...)]|NOCOMMENT COM|NOCOM COMMENT

DEFSUB|NODEFSUB DEF|NODEF DEFSUB

EQUATE[(suboptions,...)]|NOEQUATE EQU|NOEQU NOEQUATE

HDRSKIP[(length)]|NOHDRSKIP HDR(length)|NOHDR NOHDRSKIP

LOCALE(name)|NOLOCALE LOC|NOLOC NOLOCALE

INDENT[(count)]|NOINDENT IN(count)|NOIN INDENT(2)

LOWERCASE|NOLOWERCASE LC|NOLC LOWERCASE

OPTFILE(filename)|NOOPTFILE OPTF|NOOPTF NOOPTFILE

PPCOND[(switch)]|NOPPCOND PP(switch)|NOPP NOPPCOND

SEQUENCE|NOSEQUENCE SEQ|NOSEQ NOSEQUENCE

UNNAMED|NOUNNAMED UNN|NOUNN NOUNNAMED

OUTPUT[(filename)] OUT[(filename)] OUTPUT(DD:EDCDSECT)

RECFM[(recfm)] None C Library defaults

LRECL[(lrecl)] None C Library defaults

BLKSIZE[(blksize)] None C Library defaults

SECT

DEFAULT: SECT(ALL)

The SECT option specifies the section names for which C structures are to be

produced. The section names can be either CSECT or DSECT names. They must

exist in the SYSADATA file produced by the Assembler. If you do not specify the SECT

option or if you specify SECT(ALL), C structures are produced for all CSECTs and

DSECTs defined in the SYSADATA file, except for private code and unnamed

DSECTs.

If the High Level Assembler is run with the BATCH option, only the section names

defined within the first program can be specified on the SECT option. If you specify

SECT(ALL) (or select it by default), only the sections from the first program are

selected.

BITF0XL | NOBITF0XL

DEFAULT: NOBITF0XL

92 XL C/C++ for z/VM: User's Guide

Specify the BITF0XL option when the bit fields are mapped into a flag byte as in the

following example:

 FLAGFLD DS F

 ORG FLAGFLD+0

 B1FLG1 DC 0XL(B’10000000’)’00’ Definition for bit 0 of 1st byte

 B1FLG2 DC 0XL(B’01000000’)’00’ Definition for bit 1 of 1st byte

 B1FLG3 DC 0XL(B’00100000’)’00’ Definition for bit 2 of 1st byte

 B1FLG4 DC 0XL(B’00010000’)’00’ Definition for bit 3 of 1st byte

 B1FLG5 DC 0XL(B’00001000’)’00’ Definition for bit 4 of 1st byte

 B1FLG6 DC 0XL(B’00000100’)’00’ Definition for bit 5 of 1st byte

 B1FLG7 DC 0XL(B’00000010’)’00’ Definition for bit 6 of 1st byte

 B1FLG8 DC 0XL(B’00000001’)’00’ Definition for bit 7 of 1st byte

 ORG FLAGFLD+1

 B2FLG1 DC 0XL(B’10000000’)’00’ Definition for bit 0 of 2nd byte

 B2FLG2 DC 0XL(B’01000000’)’00’ Definition for bit 1 of 2nd byte

 B2FLG3 DC 0XL(B’00100000’)’00’ Definition for bit 2 of 2nd byte

 B2FLG4 DC 0XL(B’00010000’)’00’ Definition for bit 3 of 2nd byte

When the bit fields are mapped as shown in the above example, the bit fields can

be tested using the following code:

 TM FLAGFLD,L’B1FLG Test bit 0 of byte 1

 Bx label Branch if set/not set

When you specify the BITF0XL option, the length attribute of the following fields is

used to provide the mapping for the bits within the flag bytes.

The length attribute of the following fields is used to map the bit fields if a field

conforms to the following rules:

v Does not have a duplication factor of zero.

v Has a length between 1 and 4 bytes and does not have a bit length.

v Does not have more than 1 nominal value.

and the following fields conform to the following rules:

v Has a Type attribute of B, C, or X.

v Has the same offset as the field (or consecutive fields have overlapping offsets).

v Has a duplication factor of zero.

v Does not have more than 1 nominal value.

v Has a length attribute between 1 and 255 and does not have a bit length.

v The length attribute maps one bit or consecutive bits, for example, B'10000000'

or B'11000000', but not B'10100000'.

The fields must be on consecutive lines and must overlap a named field. If the

fields above are used to define the bits for a field, any EQU statements following the

field are not used to define the bit fields.

The following fields are used to define the bit fields as long as they map

consecutive bits. If two consecutive fields are equivalent, the second field is

skipped.

COMMENT | NOCOMMENT

DEFAULT: COMMENT

The COMMENT option specifies whether the comments on the line where the field is

defined will be placed in the C structure produced.

Chapter 13. DSECT Conversion Utility 93

If you specify the COMMENT option without a delimiter, the entire comment is placed in

the C structure.

If you specify a delimiter, any comments following the delimiter are skipped and are

not placed in the C structure. You can remove changes that are flagged with a

particular delimiter. The delimiter cannot contain imbedded spaces or commas. The

case of the delimiter and comment text is not significant. You can specify up to 10

delimiters, and they can contain up to 10 characters each.

DEFSUB | NODEFSUB

DEFAULT: DEFSUB

The DEFSUB option specifies whether #define directives will be built for fields that

are part of a union or substructure.

If the DEFSUB option is in effect, fields within a substructure or union have the field

names prefixed by an underscore. A #define directive is written at the end of the

structure to allow the field name to be specified directly as in the following example:

 _Packed struct dsect_name {

 int field1;

 _Packed struct {

 int _subfld1;

 short int _subfld2;

 unsigned char _subfld3[4];

 } field2;

 }

 #define subfld1 field2._subfld1

 #define subfld2 field2._subfld2

 #define subfld3 field2._subfld3

If the DEFSUB option is in effect, the fields prefixed by an underscore may match the

name of another field within the structure. No warning is issued.

EQUATE | NOEQUATE

DEFAULT: NOEQUATE

The EQUATE option specifies whether the EQU statements following a field are to be

used to define bit fields, to generate #define directives, or are to be ignored.

The suboptions specify how the EQU statement is used. You can specify one or

more of the suboptions, separating them by spaces or commas. If you specify more

than one suboption, the EQU statements following a field are checked to see if they

are valid for the first suboption. If so, they are formatted according to that option.

Otherwise, the subsequent suboptions are checked to see if they are applicable.

If you specify the EQUATE option without suboptions, EQUATE(BIT) is used. If you

specify NOEQUATE (or select it by default), the EQU statements following a field are

ignored.

You can specify the following suboptions for the EQUATE option:

BIT Indicates that the value for an EQU statement is used to define the bits for a

field where the field conforms to the following rules:

v Does not have a duplication factor of zero.

v Has a length between 1 and 4 bytes and has a bit length that is a

multiple of 8.

94 XL C/C++ for z/VM: User's Guide

v Does not have more than 1 nominal value.

and the EQU statements following the field conform to the following rules:

v The value for the EQU statements following the field mask consecutive

bits (for example, X'80' followed by X'40').

v The value for an EQU statement masks one bit or consecutive bits, for

example, B'10000000' or B'11000000', but not B'10100000'.

v Where the length of the field is greater than 1 byte, the bits for the

remaining bytes can be defined by providing the EQU statements for the

second byte after the EQU statement for the first byte.

v The value for the EQU statement is not a relocatable value.

When you specify EQUATE(BIT), the EQU statements are converted as in the

following example:

 FLAGFLD DS H

 FLAG21 EQU X’80’

 FLAG22 EQU X’40’

 FLAG23 EQU X’20’

 FLAG24 EQU X’10’

 FLAG25 EQU X’08’

 FLAG26 EQU X’04’

 FLAG27 EQU X’02’

 FLAG28 EQU X’01’

 FLAG2A EQU X’80’

 FLAG2B EQU X’40’

 _Packed struct dsect_name {

 unsigned int flag21 : 1,

 flag22 : 1,

 flag23 : 1,

 flag24 : 1,

 flag25 : 1,

 flag26 : 1,

 flag27 : 1,

 flag28 : 1,

 flag2a : 1,

 flag2b : 1,

 : 6;

 }

BITL Indicates that the length attribute for an EQU statement is used to define the

bits for a field where the field conforms to the following rules:

v Does not have a duplication factor of zero.

v Has a length between 1 and 4 bytes and has a bit length that is a

multiple of 8.

v Does not have more than 1 nominal value.

and the EQU statements following the field conform to the following rules:

v The value specified for the EQU statement has the same or overlapping

offset as the field.

v The length attribute for the EQU statement is between 1 and 255.

v The length attribute for the EQU statement masks one bit or consecutive

bits, for example, B'10000000' or B'11000000', but not B'10100000'.

v The value for the EQU statement is a relocatable value.

When you specify EQUATE(BITL), the EQU statements are converted as in the

following example:

 BYTEFLD DS F

 B1FLG1 EQU BYTEFLD+0,B’10000000’

 B1FLG2 EQU BYTEFLD+0,B’01000000’

 B1FLG3 EQU BYTEFLD+0,B’00100000’

Chapter 13. DSECT Conversion Utility 95

B1FLG4 EQU BYTEFLD+0,B’00010000’

 B1FLG5 EQU BYTEFLD+0,B’00001000’

 B1FLG6 EQU BYTEFLD+0,B’00000100’

 B1FLG7 EQU BYTEFLD+0,B’00000010’

 B1FLG8 EQU BYTEFLD+0,B’00000001’

 B2FLG1 EQU BYTEFLD+1,B’10000000’

 B2FLG2 EQU BYTEFLD+1,B’01000000’

 B2FLG3 EQU BYTEFLD+1,B’00100000’

 B2FLG4 EQU BYTEFLD+1,B’00010000’

 _Packed struct dsect_name {

 unsigned int b1flg1 : 1,

 b1flg2 : 1,

 b1flg3 : 1,

 b1flg4 : 1,

 b1flg5 : 1,

 b1flg6 : 1,

 b1flg7 : 1,

 b1flg8 : 1,

 b2flg1 : 1,

 b2flg2 : 1,

 b2flg3 : 1,

 b2flg4 : 1,

 : 20;

 }

DEF Indicates that the EQU statements following a field are used to build #define

directives to define the possible values for a field. The #define directives

are placed after the end of the C structure. The EQU statements should not

specify a relocatable value.

 When you specify EQUATE(DEF), the EQU statements are converted as in the

following example:

 FLAGBYTE DS X

 FLAG1 EQU X’80’

 FLAG2 EQU X’20’

 FLAG3 EQU X’10’

 FLAG4 EQU X’08’

 FLAG5 EQU X’06’

 FLAG6 EQU X’01’

 _Packed struct dsect_name {

 unsigned char flagbyte;

 }

 /* Values for flagbyte field */

 #define flag1 0x80

 #define flag2 0x20

 #define flag3 0x10

 #define flag4 0x08

 #define flag5 0x06

 #define flag6 0x01

HDRSKIP | NOHDRSKIP

DEFAULT: NOHDRSKIP

The HDRSKIP option specifies that the fields within the specified number of bytes

from the start of the section are to be skipped. Use this option where a section has

a header that is not required in the C structure produced.

The value specified on the HDRSKIP option indicates the number of bytes at the

start of the section that are to be skipped. HDRSKIP(0) is equivalent to NOHDRSKIP.

In the following example, if you specify HDRSKIP(8), the first two fields are skipped

and only the remaining two fields are built into the structure.

96 XL C/C++ for z/VM: User's Guide

SECTNAME DSECT

 PREFIX1 DS CL4

 PREFIX2 DS CL4

 FIELD1 DS CL4

 FIELD2 DS CL4

 _Packed struct sectname {

 unsigned char field1[4];

 unsigned char field2[4];

 }

If the value specified for the HDRSKIP option is greater than the length of the section,

the C structure is not be produced for that section.

INDENT | NOINDENT

DEFAULT: INDENT(2)

The INDENT option specifies the number of character positions that the fields,

unions, and substructures are indented. Turn off indentation by specifying INDENT(0)

or NOINDENT. The maximum value that you can specify for the INDENT option is

32767.

LOCALE | NOLOCALE

The LOCALE(name) option specifies the name of a locale to be passed to the

setlocale() function. Specifying LOCALE without the name parameter is equivalent to

passing the NULL string to the setlocale() function.

The structure produced contains the left and right brace, and left and right square

bracket, backslash, and number sign which have different code point values for the

different code pages. When the LOCALE option is specified, and these characters are

written to the output file, the code point from the LC_SYNTAX category for the

specified locale is used.

The default is NOLOCALE.

You can abbreviate the option to LOC(name) or NOLOC.

LOWERCASE | NOLOWERCASE

DEFAULT: LOWERCASE

The LOWERCASE option specifies whether the field names within the C structure are to

be converted to lowercase or left as entered. If you specify LOWERCASE, all the field

names are converted to lowercase. If you specify NOLOWERCASE, the field names are

built into the structure in the case in which they were entered in the assembler

section.

OPTFILE | NOOPTFILE

The OPTFILE(filename) option specifies the file name containing the records that

specify the options to be used for processing the sections. The records must be as

follows:

v The lines must begin with the SECT option, with only one section name specified.

The options following determine how the structure is produced for the specified

section. The section name must only be specified once.

v The lines may contain the options BITF0XL, COMMENT, DEFSUB, EQUATE, HDRSKIP,

INDENT, LOWERCASE, PPCOND, and UNNAMED, separated by spaces or commas. These

override the options specified on the command line for the section.

Chapter 13. DSECT Conversion Utility 97

The OPTFILE option is ignored if the SECT option is also specified on the command

line.

The default is NOOPTFILE.

You can abbreviate the option to OPTF(filename) or NOOPTF.

PPCOND | NOPPCOND

DEFAULT: NOPPCOND

The PPCOND option specifies whether preprocessor directives will be built around the

structure definition to prevent duplicate definitions.

If you specify PPCOND, the following are built around the structure definition.

 #ifndef switch

 #define switch

 .

 .

 .

 structure definition for section

 .

 .

 .

 #endif

where switch is the switch specified on the PPCOND option or the section name

prefixed and suffixed by two underscores, for example, __name__.

If you specify a switch, the #ifndef and #endif directives are placed around all

structures that are produced. If you do not specify a switch, the #ifndef and #endif

directives are placed around each structure produced.

SEQUENCE | NOSEQUENCE

DEFAULT: NOSEQUENCE

The SEQUENCE option specifies whether sequence numbers will be placed in columns

73 to 80 of the output record. If you specify the SEQUENCE option, the C structure is

built into columns 1 to 72 of the output record and sequence numbers are placed in

columns 73 to 80. If you specify NOSEQUENCE (or select it by default), sequence

numbers are not generated and the C structure is built within all available columns

in the output record.

If the record length for the output file is less than 80 characters, the SEQUENCE option

is ignored.

UNNAMED | NOUNNAMED

DEFAULT: NOUNNAMED

The UNNAMED option specifies that names are not generated for the unions and

substructures within the main structure.

OUTPUT

DEFAULT: OUTPUT(DD:EDCDSECT)

98 XL C/C++ for z/VM: User's Guide

The C structures produced are, by default, written to the EDCDSECT DD statement.

You can use the OUTPUT option to specify an alternative DD statement or data-set

name to write the C structure. You can specify any valid file name up to 60

characters in length. The file name specified will be passed to fopen() as entered.

RECFM

DEFAULT: C Library default

The RECFM option specifies the record format for the file to be produced. You can

specify up to 10 characters. If it is not specified, the C library defaults are used.

LRECL

DEFAULT: C Library default

The LRECL option specifies the logical record length for the file to be produced. The

logical record length specified must not be greater than 32767. If it is not specified,

the C library defaults will be used.

BLKSIZE

DEFAULT: C Library default

The BLKSIZE option specifies the block size for the file to be produced. The block

size specified must not be greater than 32767. If it is not specified, the C library

defaults will be used.

Generation of C Structures

The C structure is produced as follows according to the options in effect:

v The section name is used as the structure name. The structure is generated with

the _Packed attribute to ensure it matches the assembler section.

Whenever you specify the structure name, you should also specify the _Packed

attribute.

v Any nonalphanumeric characters in the section or field names are converted to

underscores. Duplicate names may be generated when the field names are

identical except for the national character. No warning is issued.

v Where fields overlap, a substructure or union is built within the main structure. A

substructure is produced where possible. When substructures and unions are

built, the structure and unions names are generated by the DSECT utility.

v The substructures and unions within the main structure are indented according to

the INDENT option unless the record length is too small to permit any further

indentation.

v Fillers are added within the structure when required. A filler name is generated by

the DSECT utility.

v Where there is no direct equivalent for an assembler definition within the C

language, the field is defined as a character field.

v If a field has a duplication factor of zero, but cannot be used as a structure

name, the field is defined as though the duplication factor of zero was eliminated.

v Where a line within the assembler input consists of an operand with a duplication

factor of zero (for alignment), followed by the field definition, the first operand is

skipped. For example:

 FIELDA DS OF,CLB

Chapter 13. DSECT Conversion Utility 99

is treated as though the following was specified:

 FIELDA DS CLB

v When the COMMENT option is in effect, the comment on the line following the

definition of the field is placed in the C structure. The comment is placed on the

same line as the field definition where possible, or on the following line.

/* is removed from the beginning of comments and */ is removed from the end of

comments. Any remaining instances of */ in the comment are converted to **.

Each field within the section is converted to a field within the C structure as shown

in the following examples:

v Bit length fields

If the field has a bit length that is not a multiple of 8, it is converted as follows.

Otherwise, it is converted according to the field type.

DS CL.n unsigned int name : n; where n is from 1

to 31.

DS CL.n unsigned char name[x]; where n is greater

than 32. x will be the number of bytes required

(that is, the bit length / 8 + 1).

DS 5CL.n unsigned char name[x]; where x will be the

number of bytes required (that is, the duplication

factor * bit length / 8 + 1).

v Characters

DS C unsigned char name;

DS CL2 unsigned char name[2];

DS 4CL2 unsigned char name[4][2];

v Graphic Characters

DS G wchar_t name;

DS GL1 unsigned char name;

DS GL2 wchar_t name;

DS GL3 unsigned char name[3];

DS 4GL1 unsigned char name[4];

DS 4GL2 wchar_t name[4];

DS 4GL3 unsigned char name[4][3];

v Hexadecimal Characters

DS X unsigned char name;

DS XL2 unsigned char name[2];

DS 4XL2 unsigned char name[4][2];

v Binary fields

DS B unsigned char name;

DS BL2 unsigned char name[2];

DS 4BL2 unsigned char name[4][2];

v Half and Fullword Fixed-point

DS F int name;

100 XL C/C++ for z/VM: User's Guide

DS H short int name;

DS FL1 or HL1 char name;

DS FL2 or HL2 short int name;

DS FL3 or HL3 int name : 24;

DS FLn or HLn unsigned char name[n]; where n is greater

than 4.

DS 4F int name[4];

DS 4H short int name[4];

DS 4FL1 or 4HL1 char name[4];

DS 4FL2 or 4HL2 short int name[4];

DS 4FL3 or 4HL3 unsigned char name[4][3];

DS 4FLn or 4HLn unsigned char name[4][n]; where n is

greater than 4.

v Floating Point

DS E float name;

DS D double name;

DS L long double name;

DS 4E float name[4];

DS 4D double name[4];

DS 4L long double name[4];

DS EL4 or DL4 or LL4 float name;

DS EL8 or DL8 or LL8 double name;

DS LL16 long double name;

DS E, D or L unsigned char name[n]; where n is other

than 4, 8 or 16.

v Packed Decimal

DS P unsigned char name;

DS PL2 unsigned char name[2];

DS 4PL2 unsigned char name[4][2];

v Zoned Decimal

DS Z unsigned char name;

DS ZL2 unsigned char name[2];

DS 4ZL2 unsigned char name[4][2];

v Address

DS A void *name;

DS AL1 unsigned char name;

DS AL2 unsigned short name;

DS AL3 unsigned int name : 24;

DS 4A void *name[4];

Chapter 13. DSECT Conversion Utility 101

DS 4AL1 unsigned char name[4];

DS 4AL2 unsigned short name[4];

DS 4AL3 unsigned char name[4][3];

v Y-type Address

DS Y unsigned short name;

DS YL1 unsigned char name;

DS 4Y unsigned short name[4];

DS 4YL1 unsigned char name[4];

v S-type Address (Base and displacement)

DS S unsigned short name;

DS SL1 unsigned char name;

DS 4S unsigned short name[4];

DS 4SL1 unsigned char name[4];

v External Symbol Address

DS V void *name;

DS VL3 unsigned int name : 24;

DS 4V void *name[4];

DS 4VL3 unsigned char name[4][3];

v External Dummy Section Offset

DS Q unsigned int name;

DS QL1 unsigned char name;

DS QL2 unsigned short name;

DS QL3 unsigned int name : 24;

DS 4Q unsigned int name[4];

DS 4QL1 unsigned char name[4];

DS 4QL2 unsigned short name[4];

DS 4QL3 unsigned char name[4][3];

v Channel Command Words

When a CCW, CCW0, or CCW1 assembler instruction is present within the

section, a typedef ccw0_t or ccw1_t is defined to map the format of the CCW.

The CCW, CCW0 or CCW1 is built into the C structure as follows:

CCW cc,addr,flags,count ccw0_t name;

CCW0 cc,addr,flags,count ccw0_t name;

CCW1 cc,addr,flags,count ccw1_t name;

102 XL C/C++ for z/VM: User's Guide

Chapter 14. Code Set and Locale Utilities

This chapter describes the code set conversion utilities that help you convert a file

from one code set to another and the localedef utility that allows you to define the

language and cultural conventions used in your environment.

Code Set Conversion Utilities

The code set conversion facilities that you may find useful prior to compiling are:

iconv Converts a file from one code set encoding to another. It can be

used to convert C source code before compilation or to convert

input files.

genxlt Generates a translate table for use by the iconv utility and iconv

functions to perform code set conversion. It can be used to build

code set conversions for existing code pages that are not supplied

with C, or to build code set conversions for existing code pages.

The iconv_open(), iconv(), and iconv_close() functions are called

from the iconv utility to perform code set translation. These

functions can be called from any program requiring code set

translation. For more information on these functions, see XL C/C++

for z/VM: Runtime Library Reference.

iconv Utility

The iconv utility converts the characters from the input file from one coded

character set (code set) definition to another code set definition, and writes the

characters to the output file.

The iconv utility uses the iconv_open(), iconv(), and iconv_close() functions to

convert the input file records from the coded character set definition for the input

code page to the coded character set definition for the output code page. There is

one record in the output file for each record in the input file. No padding or

truncation of records is performed.

When conversions are performed between single-byte code pages, the output

records are the same length as the input records. When conversions are performed

between double-byte code pages, the output records may be longer or shorter than

the input records because the shift-out and shift-in characters may be added or

removed.

The ICONV EXEC is provided to invoke the iconv utility to copy the input file to the

output file and convert the characters from the input code page to the output code

page.

The syntax of the ICONV command is:

© Copyright IBM Corp. 2003, 2008 103

�� ICONV inname intype inmode outname outtype outmode (�

�

�

FROMCODE

fromcode

TOCODE

tocode

)

��

inname

is the file name of the input file.

intype

is the file type of the input file.

inmode

is the file mode of the input file.

outname

is the file name of the output file. If = is specified, the output file is the same as

the input file.

outtype

is the file type of the output file. If = is specified, the output file type is the same

as the input file type.

outmode

is the file mode of the output file. If = is specified, the output file mode is the

same as the input file mode.

fromcode

is the name of the codeset in which the input data is encoded.

tocode

is the name of the codeset to which the output data is to be converted.

 In the following example, the input file is INPUT FILE A in code page IBM-037 and

the output file is OUTPUT FILE A in code page IBM-1047.

 ICONV INPUT FILE A OUTPUT FILE A (FROMCODE IBM-037 TOCODE IBM-1047

Note: If the FROMCODE or TOCODE is specified more than once, the last value

specified is used. The output file is created with a record format of V. For

more information, see z/OS: XL C/C++ Programming Guide.

genxlt Utility

The genxlt utility creates translation tables, which are used by the iconv_open(),

iconv(), and iconv_close() services of the runtime library. These services can be

called from both non-XPLINK and XPLINK applications. The non-XPLINK and

XPLINK versions have different names. The non-XPLINK version of the GENXLT

table should always be generated. If any XPLINK applications will require one of

these translation tables, then the XPLINK version should also be generated.

The genxlt utility reads character conversion information from the input file and

writes the compiled conversion table to the LOADLIB. The input file contains

directives that are acted upon by the genxlt utility to produce the compiled version

of the conversion table. The source input to the genxlt utility is assumed to be

implicitly specified in code page IBM-1047.

104 XL C/C++ for z/VM: User's Guide

The GENXLT EXEC invokes the genxlt utility to read the character conversion

information and produces the conversion table. It may be invoked under VM/CMS

or VM batch. The genxlt utility options can be specified on the command line. If the

same option is specified more than once, the last option specified is used.

The syntax of the GENXLT command is:

�� GENXLT filename (LIB libname

filetype

filemode

 �

�
 NODBCS

DBCS

)

��

filename

is the file name of the file containing the character conversion information.

filetype

is the file type of the file containing the character conversion information. If it is

not specified, it defaults to GENXLT.

filemode

is the file mode of the file containing the character conversion information. If it is

not specified, the accessed disks are searched for the first file that matches the

file name and file type.

LIB libname

specifies the name of the LOADLIB. The member name in the LOADLIB will be

the same as filename.

NODBCS

DBCS

specifies whether the DBCS characters within shift-out and shift-in characters

will be converted. The DBCS option should be specified only when an EBCDIC

code page is being converted to a different EBCDIC code page.

 If the DBCS option is specified, when a shift-out character is encountered in the

input, the characters up to the shift-in character are copied to the output, and

not converted. There must be an even number of characters between the

shift-out and shift-in characters, and the characters must be valid DBCS

characters.

If the NODBCS option is specified (or by default), all the characters are converted,

and no checking of DBCS characters is performed.

 For more information, see z/OS: XL C/C++ Programming Guide.

The conversion table is built as a member of the loadlib specified. The member

name is the same as the filename specified.

In the following example, the input file is EDCUEAEY GENXLT A, the library is MYLIB

with the DBCS option, and the conversion is from IBM-037 to IBM-1047.

 GENXLT EDCUEAEY GENXLT A (LIB MYLIB DBCS

Chapter 14. Code Set and Locale Utilities 105

To make the conversion table available for the iconv utility and iconv_open()

function, issue the GLOBAL LOADLIB command, as follows:

 GLOBAL LOADLIB MYLIB SCEERUN

localedef Utility

The localedef utility creates locale objects, which are used by the setlocale()

service of the runtime library. This service can be called from both non-XPLINK and

XPLINK applications. The non-XPLINK and XPLINK locale object versions have

different names. The non-XPLINK version of the locale object should always be

generated. If any XPLINK applications will use the locale then the XPLINK version

should also be generated.

A locale is a collection of data that defines language and cultural conventions.

Locales consist of various categories, that are identified by name, that characterize

specific aspects of your cultural environment.

The localedef utility generates locales according to the rules that are defined in the

locale definition file. A user can create his own customized locale definition file.

The localedef utility reads the locale definition file and produces a locale object

that can be used by the locale specific library functions.

The LOCALDEF EXEC invokes the localedef utility under VM/CMS and VM batch.

It does the following:

1. Invokes the CCNELDEF module to read the locale definition file and produce the C

code to build the locale

2. Invokes the XL C/C++ compiler to compile the C source generated

3. Invokes the VM/CMS BIND command to build a loadlib member

The options for the localedef utility are specified on the command line. They can

be separated by spaces or commas. If the same option is specified more than

once, the last option specified is used.

The syntax of the LOCALDEF command is:

�� LOCALDEF filename (

filetype

filemode

 �

�
CHARMAP(name)

FLAG(W)

NOBLDERR

XPLINK

FLAG(E)

BLDERR

 �

� LIB libname MBR mbrname ��

filename

is the file name of the file containing the locale definition information.

filetype

is the file type of the file containing the locale definition information. If it is not

specified, it defaults to LOCALE.

106 XL C/C++ for z/VM: User's Guide

filemode

is the file mode of the file containing the locale definition information. If it is not

specified, the accessed disks are searched for the first file that matches the file

name and file type.

CHARMAP(name)

specifies the member name of the file containing the mapping of the character

symbols to actual character encodings. If this option is not specified, the

localedef utility defaults the Charmap to IBM-1047.

 The name specified is the file name of the charmap file. The file type is

CHARMAP.

FLAG(W)

FLAG(E)

specifies whether warning messages are issued. If FLAG(W) is specified (or by

default), warning and error messages are issued. If FLAG(E) is specified, only

the error messages are issued.

NOBLDERR

BLDERR

specifies whether the locale is generated if errors are detected. If the BLDERR

option is specified, the locale is generated even if errors are detected. If the

NOBLDERR option is specified (or by default), the locale is not generated if an

error is detected.

XPLINK

specifies that the locale to be built is an XPLINK locale.

libname

is the libname parameter of the LIB option that specifies the name of the

LOADLIB.

mbrname

is the mbrname parameter of the MBR option that specifies the member name for

the member in the LOADLIB. The member name defaults to the file name of the

input file.

 The LOADLIB member is created using the BIND command. The member name

within the LOADLIB is the member name (if specified) or the file name of the input

file. The non-XPLINK version of the locale object should have EDC$ or EDC@ as

the first four characters of the member name. The XPLINK version should have

CEH$ or CEH@ as the first four characters of the member name.

For more information on locale and code set codes, see z/OS: XL C/C++

Programming Guide.

In the following example, the locale source is EDC$EUEY LOCALE A, the library name

is MYLIB, options are CHARMAP(IBM-297), and the output member name is EDC$EUEM,

for EN_US.IBM-297.

 LOCALDEF EDC$EUEY LOCALE A (LIB MYLIB CHARMAP(IBM-297) MBR EDC$EUEM

Chapter 14. Code Set and Locale Utilities 107

108 XL C/C++ for z/VM: User's Guide

Chapter 15. OpenExtensions ar and make Utlities

OpenExtensions provides two utilities that you can use to make the task of creating

and managing OpenExtensions C/C++ application programs easier: ar and make.

Use these utilities with the c89/cxx utility to build an application program into an

easily updated and maintained executable file.

Note: All references to c89 in the following sections also apply to cxx unless

otherwise specified.

OpenExtensions Archive Libraries

The ar utility allows you to create and maintain a library of OpenExtensions C/C++

application object files. You can specify the c89 command string so that archive

libraries are processed during binding.

The archive library file, when created for application program object files, has a

special symbol table for members that are object files. The symbol table is read to

determine which object files should be bound into the application program

executable file. A c89-specified archive library is processed during binding. Any

object files in the specified archive library will be bound if they can be used to

resolve external symbols. Use of this autocall library mechanism by the c89 utility is

analogous to the use of the C370LIB Object Library utility for z/VM application

program objects. For more information, see Chapter 11, “Object Library Utility,” on

page 77.

The c89 utility requires that archive libraries obey the following naming convention

in the byte file system (BFS):

filename.a

This assumes that no directory file searching for the archive file takes place when

specified on the c89 command line. For example, to compile the application

program source file dirsum.c from the src subdirectory of your working directory

and resolve externals symbols from the symb.a archive library in your working

directory, you would enter:

 c89 -o ./exfils/dirsum ./src/dirsum.c ./symb.a

To use c89 to search for specified archive files in one or more BFS directories, use

the naming convention:

liblibname.a

On the c89 command line, specify BFS directories to be searched with the -L

directory option and an archive library with the -l libname operand. For example, to

compile the application program source file entinfo.c from the src subdirectory of

your working directory and bind it with the object file newsroute.o and the archive

file /mylib/libbrwobjs.a, enter:

 c89 -o ./entinfo -L /mylib ./src/entinfo.c newsroute.o -l brwobjs

The BFS subdirectory mylib of your working directory is searched first for the

archive library libbrwobjs.a. If it is not found there, c89 searches for the archive

library in the usual places.

© Copyright IBM Corp. 2003, 2008 109

Creating Archive Libraries

To create the archive library, use the ar -r option. For example, to create an

archive library named bin/libbrobompgm.a from your working directory and add the

member jkeyadd.o to it, specify:

 ar -rc ./bin/libbrobompgm.a jkeyadd.o

The libbrobompgm.a archive library file is created in the bin subdirectory of your

BFS working directory. Use of the -c option tells ar to suppress the message

normally sent when an archive library file is created.

To display the object files archived in the bin/libbrobompgm.a library from your

working directory, specify:

 ar -t ./bin/libbrobompgm.a

For more information about the ar utility, see z/VM: OpenExtensions Commands

Reference.

Creating Makefiles

The make utility maintains all the parts of and dependencies for your application

program. It uses a makefile, which you create, to keep your application parts (listed

in it) up to date with one another. If one part changes, make updates all the other

files that depend on the changed part.

A makefile is a normal BFS text file. Create the file and edit it using any text editor

to describe the application program files, their locations, dependencies on other

files, and rules for building the files into an application executable file. When

creating a makefile, remember that tabbing of information in the file is important and

not all editors support tab characters the same way.

The make utility invokes the c89 interface to the XL C/C++ compiler and the binder

to recompile and bind an updated application program.

For a detailed discussion of the make utility and how best take advantage of its

function, see z/VM: OpenExtensions Commands Reference and z/VM:

OpenExtensions Advanced Application Programming Tools.

110 XL C/C++ for z/VM: User's Guide

Appendix A. IBM-Supplied EXECs

This appendix lists the EXECs provided by the XL C/C++ compiler, in conjunction

with Language Environment, to call the various utilities. For more information on the

EXECs provided by Language Environment see z/OS: Language Environment

Programming Guide.

 EXEC Name Task Description

CC Compile

CMOD Generate an executable module

CXXFILT Demangle names

GENXLT Generate a translate table for use by the ICONV utility and functions

ICONV Convert a file from one code set encoding to another

LOCALDEF Produce a locale object that can be used by the locale specific library

functions

LINKLOAD Generate a fetchable module

C370LIB Maintain an object library TXTLIB

CDSECT Run the DSECT Conversion Utility

© Copyright IBM Corp. 2003, 2008 111

112 XL C/C++ for z/VM: User's Guide

Appendix B. XL C/C++ Compiler Return Codes and Messages

For complete descriptions of XL C/C++ return codes and messages, see z/OS: XL

C/C++ Messages.

© Copyright IBM Corp. 2003, 2008 113

114 XL C/C++ for z/VM: User's Guide

Appendix C. EXEC Error Messages

The messages in this section can be returned from the following XL C/C++ EXECs:

v CC

v CDSECT

v LOCALDEF

The message format is:

CCNUTLnnns text [&n]

nnn

is the message number.

s is the message type (severity):

I Informational

W Warning

E Error

text

is the message that appears on the screen.

&n

is a substitution variable, which contains a specific name in the issued

message.

CCNUTL001I &1 exec completed with return code

&2.

Explanation: The utility completed processing with the

return code specified.

User response: No response required.

CCNUTL002E Help is not available.

Explanation: The help file for the requested command

is not accessible or does not exist.

User response: Find out from your systems

programmer which disk has the help file on it and get

access to the disk. If the help file has not been installed,

have your systems programmer install it.

CCNUTL003W LE Run-Time library SCEERUN is

not in GLOBAL LOADLIB.

Explanation: The runtime library is missing.

User response: Run the z/VM command GLOBAL

LOADLIB SCEERUN to add the runtime library.

CCNUTL004W Invalid parameter list.

Explanation: The parameter list is not valid.

User response: Check the syntax of the command

you are running and correct it.

CCNUTL005E A-Disk is not accessed.

Explanation: Your A-disk is not accessed in read/write

mode.

User response: Link to and access your A-disk in

read/write mode.

CCNUTL006E A-Disk is not writable.

Explanation: Your A-disk is not accessed in read/write

mode.

User response: Link to and access your A-disk in

read/write mode.

CCNUTL008E A library name must be specified in

suboption LIB.

Explanation: You must specify a library name when

using LOCALDEF command.

User response: Check the syntax of the LOCALDEF

command and correct it.

CCNUTL009E Cannot execute program module &1.

Explanation: A module cannot be run.

User response: Check with your system programmer.

© Copyright IBM Corp. 2003, 2008 115

116 XL C/C++ for z/VM: User's Guide

Appendix D. Runtime Error Messages and Return Codes

This appendix contains information about the runtime messages and should not be

used as programming interface information.

These are messages you see while your XL C/C++ program is running. Messages

may be displayed in uppercase or in mixed case English format, or in Kanji.

perror Messages

These messages are only printed when a call to perror or strerror is made and

the errno value does not prefix the message.

Note: For information about these messages, see z/OS: Language Environment

Run-Time Messages.

XL C/C++ Runtime Return Codes

The runtime return code value is set in one of the following ways:

v By the initialization and termination routines or the program management routines

of Language Environment.

v By the return statement in your XL C/C++ program

v By calling the exit or abort functions from your XL C/C++ program.

It is possible to pass a return code from an XL C/C++ program to the program that

invoked it. For example, if the XL C/C++ program is invoked by a REXX™ exec, it

can examine the return code to determine if processing should continue.

The return code generated by an XL C/C++ program consists of two elements. One

element is specified if the program calls the exit function or if the program specifies

a return value when returning from main. The other element is specified by the

program management routines of the Language Environment library and indicates

the way in which your program terminated. Unless an error is detected that

prevents the program management routines from operating correctly, the two

elements are added together to form a total in which the thousands digit indicates

the way in which your program terminated and the hundreds, tens, and units are set

by your program.

Valid return codes are -231 to 231-1, inclusive.

Note: The CMS READY(nnnnn) prompt displays only the last 5 digits of the return

code. For example, 2,000,000 is displayed as READY(00000). You can write a

REXX exec to retrieve the full return code.

For a list of error messages, see z/OS: Language Environment Run-Time

Messages.

© Copyright IBM Corp. 2003, 2008 117

118 XL C/C++ for z/VM: User's Guide

Appendix E. Utility Messages

This appendix contains information about the DSECT utility messages.

See z/OS: Language Environment Run-Time Messages for messages and return

codes for:

v Object Library Utility

v Runtime messages and return codes

v localedef Utility

v genxlt Utility

v iconv Utility

See z/OS: XL C/C++ Messages for messages and return codes for the CXXFILT

utility.

DSECT Utility Messages

Return Codes

 Table 8. Return Codes from the DSECT Utility

Return Code Meaning

0 Successful completion.

4 Successful completion, warnings issued.

8 DSECT Utility failed, error messages issued.

12 DSECT Utility failed, severe error messages issued.

16 DSECT Utility failed, insufficient storage to continue processing.

Messages

The messages issued by the DSECT utility have the format:

EDCnnnn ss text [&n]

nnnn

is the message number.

ss is the message type (severity):

00 Informational

10 or E

Error warning

30 Error

40 Severe error

text

is the message that appears on the screen.

&n

is a substitution variable, which contains a specific name in the issued

message.

EDC5500 10 Option &1 is not valid and is

ignored.

Explanation: The option specified in the message is

not valid DSECT Utility option or a valid option has

© Copyright IBM Corp. 2003, 2008 119

been specified with an invalid value. The specified

option is ignored.

User response: Rerun the DSECT Utility with the

correct option.

EDC5501 30 No DSECT or CSECT names were

found in the SYSADATA file.

Explanation: The SECT option was not specified or

SECT(ALL) was specified. The SYSADATA was

searched for all DSECTs and CSECTs but no DSECTs

or CSECTs were found.

User response: Rerun the DSECT Utility with a

SYSADATA file that contains the required DSECT or

CSECT definition.

EDC5502 30 Sub option &1 for option &2 is too

long.

Explanation: The sub option specified for the option

was too long and is ignored.

EDC5503 30 Section name &1 was not found in

SYSADATA File.

Explanation: The section name specified with the

SECT option was not found in the External Symbol

records in the SYSADATA file. The C structure is not

produced.

User response: Rerun the DSECT Utility with a

SYSADATA file that contains the required DSECT or

CSECT definition.

EDC5504 30 Section name &1 is not a DSECT or

CSECT.

Explanation: The section name specified with the

SECT option is not a DSECT or CSECT. Only a DSECT

or CSECT names may be specified. The C structure is

not produced.

EDC5505 00 No fields were found for section &1,

structure is not produced.

Explanation: No field records were found in the

SYSADATA file that matched the ESDID of the specified

section name. The C structure is not produced.

EDC5506 30 Record length for file ″&1″ is too

small for the SEQUENCE option,

option ignored.

Explanation: The record length for the output file

specified is too small to enable the SEQUENCE option

to generate the sequence number in columns 73 to 80.

The available record length must be greater than or

equal to 80 characters. The SEQUENCE option is

ignored.

EDC5507 40 Insufficient storage to continue

processing.

Explanation: No further storage was available to

continue processing.

User response: Rerun the DSECT Utility with a larger

virtual machine (CMS).

EDC5508 30 Open failed for file ″&1″: &2

Explanation: This message is issued if the open fails

for any file required by the DSECT Utility. The file name

passed to fopen() and the error message returned by

strerror(errno) is included in the message.

User response: The message text indicates the cause

of the error. If the file name was specified incorrectly on

the OUTPUT option, rerun the DSECT Utility with the

correct file name.

EDC5509 40 &1 failed for file ″&2″: &3

Explanation: This message is issued if any error

occurs reading, writing or positioning on any file by the

DSECT Utility. The name of the function that failed

(Read, Write, fgetpos, fsetpos), file name and text from

strerror(errno) is included in the message.

User response: This message may be issued if an

error occurs reading or writing to a file. This may be

caused by an error within the file, such as an I/O error

or insufficient disk space. Correct the error and rerun

the DSECT Utility.

EDC5510 40 Internal Logic error in function &1

Explanation: The DSECT Utility has detected that an

error has occurred while generating the C structure.

Processing is terminated and the C structure is not

produced.

User response: This may be caused by an error in

the DSECT Utility or by incorrect input in the

SYSADATA file. Contact your systems administrator.

EDC5511 10 No matching right parenthesis for

&1 option.

Explanation: The option specified had a sub option

beginning with a left parenthesis but no right

parenthesis was present.

User response: Rerun the DSECT Utility with the

parenthesis for the option correctly paired.

EDC5512 10 No matching quote for &1 option.

Explanation: The OUTPUT option has a sub option

beginning with a single quote but no matching quote

was found.

User response: Rerun the DSECT Utility with the

120 XL C/C++ for z/VM: User's Guide

quotes for the option correctly paired.

EDC5513 10 Record length too small for file

″&1″.

Explanation: The record length for the Output file

specified is less than 10 characters in length. The

minimum available record length must be at least 10

characters.

User response: Rerun the DSECT Utility with an

output file with a available record length of at least 10

characters.

EDC5514 30 Too many sub options were

specified for option &1.

Explanation: More than the maximum number of sub

options were specified for the particular option. The

extra sub options are ignored.

EDC5515 00 HDRSKIP option value greater than

length for section &1, structure is not

produced.

Explanation: The value specified for the HDRSKIP

option was greater than the length of the section. A

structure was not produced for the specified section.

User response: Rerun the DSECT Utility with a

smaller value for the HDRSKIP option.

EDC5516 10 SECT and OPTFILE options are

mutually exclusive, OPTFILE option is

ignored

Explanation: Both the SECT and OPTFILE options

were specified, but the options are mutually exclusive.

User response: Rerun the DSECT Utility with either

the SECT or OPTFILE option.

EDC5517 10 Line &1 from ″&2″ does not begin

with SECT option

Explanation: The line from the file specified on the

OPTFILE option did not begin with the SECT option.

The line was ignored.

User response: Rerun the DSECT Utility without

OPTFILE option, or correct the line in the input file.

EDC5518 10 setlocale() failed for locale name

″&1″.

Explanation: The setlocale() function failed with the

locale name specified on the LOCALE option. The

LOCALE option was ignored.

User response: Rerun the DSECT Utility without

LOCALE option, or correct the locale name specified

with the LOCALE option.

Appendix E. Utility Messages 121

122 XL C/C++ for z/VM: User's Guide

Appendix F. Layout of the Events File

This appendix specifies the layout of the SYSEVENT file. The SYSEVENT file

contains error information and source file statistics. Use the EVENTS compiler option

to produce the SYSEVENT file. For more information on the EVENTS compiler option,

see “EVENTS | NOEVENTS” on page 27.

In the following example, the source file SIMPLE C is compiled with the

EVENTS(EGEVENT FILE) compiler option. The file ERR H is a header file that is

included in SIMPLE C. Figure 32 is the event file that is generated when SIMPLE C is

compiled.

There are three different record types generated in the event file:

v FILEID

v FILEEND

v ERROR

FILEID Field

The following is an example of the FILEID field from the sample SYSEVENT file

that is shown in Figure 32. Table 9 on page 124 describes the FILEID identifiers.

 FILEID 0 1 0 13 ’SIMPLE C A1’

 A B C D E

1 #include "err.h"

2 main() {

3 add some error messages;

4 return(0);

5 here and there;

6 }

Figure 30. SIMPLE C

1 add some;

2 errors in the header file;

Figure 31. ERR H

------- start simple.events ------

 FILEID 0 1 0 13 ’SIMPLE C A1’

 FILEID 0 2 1 8 ERR H A1

 ERROR 0 2 1 0 1 1 1 8 CCN3166 E 12 48 Definition of function add requires parentheses.

 FILEEND 0 2 2

 ERROR 0 2 1 0 1 5 2 8 CCN3276 E 12 35 Syntax error: possible missing ’{’?

 ERROR 0 1 1 0 3 4 3 27 CCN3045 E 12 26 Undeclared identifier add.

 ERROR 0 1 1 0 5 9 5 18 CCN3277 E 12 42 Syntax error: possible missing ’;’ or ’,’?

 ERROR 0 1 1 0 5 4 5 18 CCN3045 E 12 27 Undeclared identifier here.

 FILEEND 0 1 6

------- end simple.events ------

Figure 32. Sample SYSEVENT file

© Copyright IBM Corp. 2003, 2008 123

Table 9. Explanation of the FILEID Field Layout

Column Identifier Description

A Revision Revision number of the event record.

B File number Increments starting with 1 for the primary file.

C Line number The line number of the #include directive. For the

primary source file, this value is 0.

D File name length Length of file or data set.

E File name String containing file/data set name.

FILEEND Field

The following is an example of the FILEEND field from the sample SYSEVENT file

that is shown in Figure 32 on page 123. Table 10 describes the FILEEND identifiers.

 FILEEND 0 1 6

 A B C

 Table 10. Explanation of the FILEEND Field Layout

Column Identifier Description

A Revision Revision number of the event record.

B File number File number that has been processed to end of

file.

C Expansion Total number of lines in the file.

ERROR Field

The following is an example of the ERROR field from the sample SYSEVENT file

that is shown in Figure 32 on page 123. Table 11 describes the ERROR identifiers.

 ERROR 0 1 1 0 3 4 3 27 CCN3045 E 12 26 Undeclared identifier add.

 A B C D E F G H I J K L M

 Table 11. Explanation of the ERROR Field Layout

Column Identifier Description

A Revision Revision number of the event record.

B File number Increments starting with 1 for the primary file.

C Reserved Do not build a dependency on this identifier. It is

reserved for future use.

D Reserved Do not build a dependency on this identifier. It is

reserved for future use.

E Starting line number The source line number for which the message was

issued. A value of 0 indicates the message was not

associated with a line number.

F Starting column number The column number or position within the source line

for which the message was issued. A value of 0

indicates the message is not associated with a line

number.

G Reserved Do not build a dependency on this identifier. It is

reserved for future use.

H Reserved Do not build a dependency on this identifier. It is

reserved for future use.

124 XL C/C++ for z/VM: User's Guide

Table 11. Explanation of the ERROR Field Layout (continued)

Column Identifier Description

I Message identifier String Containing the message identifier.

J Message severity

character

I=Informational W=Warning E=Error S=Severe

U=Unrecoverable

K Message severity number Return code associated with the message.

L Message length Length of message text.

M Message text String containing message text.

Appendix F. Layout of the Events File 125

126 XL C/C++ for z/VM: User's Guide

Notices

This information was developed for products and services offered in the U.S.A. IBM

may not offer the products, services, or features discussed in this document in all

countries. Consult your local IBM representative for information on the products and

services currently available in your area. Any reference to an IBM product, program,

or service is not intended to state or imply that only that IBM product, program, or

service may be used. Any functionally equivalent product, program, or service that

does not infringe any IBM intellectual property right may be used instead. However,

it is the user’s responsibility to evaluate and verify the operation of any non-IBM

product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you any

license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, New York 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply to

you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements and/or

changes in the product(s) and/or the program(s) described in this publication at any

time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those

Web sites. The materials at those Web sites are not part of the materials for this

IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of

enabling: (i) the exchange of information between independently created programs

© Copyright IBM Corp. 2003, 2008 127

and other programs (including this one) and (ii) the mutual use of the information

which has been exchanged, should contact:

IBM Corporation

Mail Station P300

2455 South Road

Poughkeepsie, New York 12601-5400

U.S.A.

Attention: Information Request

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available

for it are provided by IBM under terms of the IBM Customer Agreement, IBM

International Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurement may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those

products, their published announcements or other publicly available sources. IBM

has not tested those products and cannot confirm the accuracy of performance,

compatibility or any other claims related to non-IBM products. Questions on the

capabilities of non-IBM products should be addressed to the suppliers of those

products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language,

which illustrate programming techniques on various operating platforms. You may

copy, modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not been

thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply

reliability, serviceability, or function of these programs.

Programming Interface Information

This publication documents intended Programming Interfaces that allow the

customer to write programs to obtain the services of IBM XL C/C++ for z/VM and

IBM z/VM.

128 XL C/C++ for z/VM: User's Guide

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of

International Business Machines Corporation in the United States, other countries,

or both. If these and other IBM trademarked terms are marked on their first

occurrence in this information with a trademark symbol (® or

™), these symbols

indicate U.S. registered or common law trademarks owned by IBM at the time this

information was published. Such trademarks may also be registered or common law

trademarks in other countries. A current list of IBM trademarks is available on the

Web at “Copyright and trademark information” at http://www.ibm.com/legal/
copytrade.shtml

Adobe is either a registered trademark or a trademark of Adobe Systems

Incorporated in the United States, and/or other countries.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, and service names may be trademarks or service marks

of others.

Notices 129

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

130 XL C/C++ for z/VM: User's Guide

Glossary

This glossary defines technical terms and

abbreviations that are used in the IBM XL C/C++

for z/VM and z/OS XL C/C++ documentation. If

you do not find the term you are looking for, refer

to the index of the appropriate manual, or view the

“IBM Terminology” Web site at

www.ibm.com/software/globalization/terminology/
index.jsp

This glossary includes terms and definitions from:

v American National Standard Dictionary for

Information Systems, ANSI/ISO X3.172-1990,

copyright 1990 by the American National

Standards Institute (ANSI/ISO). Copies may be

purchased from the American National

Standards Institute, 11 West 42nd Street, New

York, New York 10036. These definitions are

indicated by the symbol ANSI/ISO at the end.

v IBM Dictionary of Computing, SC20-1699.

These definitions are indicated by the symbol

IBM at the end.

v X/Open CAE Specification, Commands and

Utilities, Issue 4. July, 1992. These definitions

are indicated by the symbol X/Open at the end.

v ISO/IEC 9945-1:1990/IEEE POSIX

1003.1-1990. These definitions are indicated by

the symbol ISO.1 at the end.

v The Information Technology Vocabulary,

developed by Subcommittee 1, Joint Technical

Committee 1, of the International Organization

for Standardization and the International

Electrotechnical Commission (ISO/IEC

JTC1/SC1). Definitions of published parts of this

vocabulary are identified by the symbol

ISO/JTC1 at the end; definitions taken from

draft international standards, committee drafts,

and working papers being developed by

ISO/IEC JTC1/SC1 are identified by the symbol

ISO Draft, indicating that final agreement has

not yet been reached among the participating

National Bodies of SC1.

A

abstract class. (1) A class with at least one pure

virtual function that is used as a base class for other

classes. The abstract class represents a concept;

classes derived from it represent implementations of the

concept. You cannot create a direct object of an

abstract class, but you can create references and

pointers to an abstract class and set them to refer to

objects of classes derived from the abstract class. See

also base class. (2) A class that allows polymorphism.

There can be no objects of an abstract class; they are

only used to derive new classes.

abstract code unit. See ACU

abstract data type. A mathematical model that

includes a structure for storing data and operations that

can be performed on that data. Common abstract data

types include sets, trees, and heaps.

abstraction (data). A data type with a private

representation and a public set of operations (functions

or operators) which restrict access to that data type to

that set of operations. The C++ language uses the

concept of classes to implement data abstraction.

access. An attribute that determines whether or not a

class member is accessible in an expression or

declaration.

access declaration. A declaration used to restore

access to members of a base class.

access mode. (1) A technique that is used to obtain a

particular logical record from, or to place a particular

logical record into, a file assigned to a mass storage

device. ANSI/ISO (2) The manner in which files are

referred to by a computer. Access can be sequential

(records are referred to one after another in the order in

which they appear on the file), access can be random

(the individual records can be referred to in a

nonsequential manner), or access can be dynamic

(records can be accessed sequentially or randomly,

depending on the form of the input/output request). IBM

(3) A particular form of access permitted to a file.

X/Open

access resolution. The process by which the

accessibility of a particular class member is determined.

access specifier. One of the C++ keywords: public,

private, and protected, used to define the access to a

member.

ACU (abstract code unit). A measurement used by

the C/C++ compiler for judging the size of a function.

The number of ACUs that comprise a function is

proportional to its size and complexity.

additional heap. A Language Environment heap

created and controlled by a call to CEECRHP. See also

below heap, anywhere heap, and initial heap.

addressing mode. See AMODE.

address space. (1) The range of addresses available

to a computer program. ANSI/ISO (2) The complete

range of addresses that are available to a programmer.

See also virtual address space. (3) The area of virtual

© Copyright IBM Corp. 2003, 2008 131

http://www.ibm.com/software/globalization/terminology/index.jsp
http://www.ibm.com/software/globalization/terminology/index.jsp

storage available for a particular job. The memory

locations that can be referenced by a process. X/Open

ISO.1

aggregate. (1) An array or a structure. (2) A

compile-time option to show the layout of a structure or

union in the listing. (3) In programming languages, a

structured collection of data items that form a data type.

ISO/JTC1 (4) In C++, an array or a class with no

user-declared constructors, no private or protected

non-static data members, no base classes, and no

virtual functions.

alert. (1) A message sent to a management services

focal point in a network to identify a problem or an

impending problem. IBM (2) To cause the user’s

terminal to give some audible or visual indication that an

error or some other event has occurred. When the

standard output is directed to a terminal device, the

method for alerting the terminal user is unspecified.

When the standard output is not directed to a terminal

device, the alert is accomplished by writing the alert

character to standard output (unless the utility

description indicates that the use of standard output

produces undefined results in this case). X/Open

alert character. A character that in the output stream

should cause a terminal to alert its user via a visual or

audible notification. The alert character is the character

designated by a ’\a’ in the C and C++ languages. It is

unspecified whether this character is the exact

sequence transmitted to an output device by the system

to accomplish the alert function. X/Open

 This character is named <alert> in the portable

character set.

alias. (1) An alternate label; for example, a label and

one or more aliases may be used to refer to the same

data element or point in a computer program. ANSI/ISO

(2) An alternate name for a member of a partitioned

data set. IBM (3) An alternate name used for a network.

Synonymous with nickname. IBM

alias name. (1) A word consisting solely of

underscores, digits, and alphabetics from the portable

file name character set, and any of the following

characters: ! % , @. Implementations may allow other

characters within alias names as an extension. X/Open

(2) An alternate name. IBM (3) A name that is defined in

one network to represent a logical unit name in another

interconnected network. The alias name does not have

to be the same as the real name. If these names are

not the same, translation is required. IBM

alignment. The storing of data in relation to certain

machine-dependent boundaries. IBM

alternate code point. A syntactic code point that

permits a substitute code point to be used. For

example, the left brace ({) can be represented by X’B0’

and also by X’C0’.

American National Standard Code for Information

Interchange (ASCII). The standard code, using a

coded character set consisting of 7-bit coded characters

(8 bits including parity check), that is used for

information interchange among data processing

systems, data communication systems, and associated

equipment. The ASCII set consists of control characters

and graphic characters. IBM

Note: IBM has defined an extension to ASCII code

(characters 128-255).

American National Standards Institute (ANSI/ISO).

An organization consisting of producers, consumers,

and general interest groups, that establishes the

procedures by which accredited organizations create

and maintain voluntary industry standards in the United

States. ANSI/ISO

AMODE (addressing mode). A program attribute that

refers to the address length that a program is prepared

to handle upon entry. Addresses may be 24 or 31 bits in

length. IBM

angle brackets. The characters < (left angle bracket)

and > (right angle bracket). When used in the phrase

″enclosed in angle brackets,″ the symbol < immediately

precedes the object to be enclosed, and > immediately

follows it. When describing these characters in the

portable character set, the names <less-than-sign> and

<greater-than-sign> are used. X/Open

anonymous union. A union that is declared within a

structure or class and does not have a name. It must

not be followed by a declarator.

ANSI/ISO. See American National Standards Institute.

ANSI C. A definition of the programming language

developed by the American National Standards Institute.

The standard document is designated by ANSI/ISO

9899-19901992Ù. It was previously known as ANSI

X3.159-1989.

anywhere heap. The C/C++ controlled by the

ANYHEAP run-time option. It contains library data, such

as run-time control blocks and data structures not

normally accessible from user code. The anywhere

heap may reside above 16M. See also below heap,

additional heap, and initial heap.

API (application program interface). A functional

interface supplied by the operating system or by a

separately orderable licensed program that allows an

application program written in a high-level language to

use specific data or functions of the operating system or

the licensed program. IBM

application. (1) The use to which an information

processing system is put; for example, a payroll

application, an airline reservation application, a network

132 XL C/C++ for z/VM: User's Guide

application. IBM (2) A collection of software components

used to perform specific types of user-oriented work on

a computer. IBM

application generator. An application development

tool that creates applications, application components

(panels, data, databases, logic, interfaces to system

services), or complete application systems from design

specifications.

application program. A program written for or by a

user that applies to the user’s work, such as a program

that does inventory control or payroll. IBM

archive libraries. The archive library file, when

created for application program object files, has a

special symbol table for members that are object files.

argument. (1) A parameter passed between a calling

program and a called program. IBM (2) In a function

call, an expression that represents a value that the

calling function passes to the function specified in the

call. (3) In the shell, a parameter passed to a utility as

the equivalent of a single string in the argv array

created by one of the exec functions. An argument is

one of the options, option-arguments, or operands

following the command name. X/Open

argument declaration. See parameter declaration.

arithmetic object. (1) A bit field, or an integral,

floating-point, or packed decimal (IBM extension) object.

(2) A real object or objects having the type float, double,

or long double.

array. In programming languages, an aggregate that

consists of data objects with identical attributes, each of

which may be uniquely referenced by subscripting.

ISO/JTC1

array element. A data item in an array. IBM

ASCII. See American National Standard Code for

Information Interchange.

Assembler H. An IBM licensed program. Translates

symbolic assembler language into binary machine

language.

assembler language. A source language that includes

symbolic language statements in which there is a

one-to-one correspondence with the instruction formats

and data formats of the computer. IBM

assembler user exit. In Language Environment a

routine to tailor the characteristics of an enclave prior to

its establishment.

assignment expression. An expression that assigns

the value of the right operand expression to the left

operand variable and has as its value the value of the

right operand. IBM

atexit list. A list of actions specified in the C/C++

atexit() function that occur at normal program

termination.

auto storage class specifier. A specifier that enables

the programmer to define a variable with automatic

storage; its scope restricted to the current block.

automatic call library. Contains modules that are

used as secondary input to the binder to resolve

external symbols left undefined after all the primary

input has been processed.

 The automatic call library can contain:

v Object modules, with or without binder control

statements

v Load modules

v C/C++ run-time routines (SCEELKED)

automatic library call. The process in which control

sections are processed by the binder or loader to

resolve references to members of partitioned data sets.

IBM

automatic storage. Storage that is allocated on entry

to a routine or block and is freed on the subsequent

return. Sometimes referred to as stack storage or

dynamic storage.

B

background job. (1) A low-priority job, usually a

batched or noninteractive job. IBM (2) A background

process group. X/Open

background process. (1) A process that does not

require operator intervention but can be run by the

computer while the workstation is used to do other

work. IBM (2) A mode of program execution in which the

shell does not wait for program completion before

prompting the user for another command. IBM (3) A

process that is a member of a background process

group. X/Open ISO.1

background process group. Any process group,

other than a foreground process group, that is a

member of a session that has established a connection

with a controlling terminal. X/Open ISO.1

backslash. The character \. This character is named

<backslash> in the portable character set.

base class. A class from which other classes are

derived. A base class may itself be derived from another

base class. See also abstract class.

based on. The use of existing classes for

implementing new classes.

below heap. The C/C++ heap controlled by the

BELOWHEAP Run-Time option, which contains library

data, such as run-time control block and data structures

Glossary 133

not normally accessible from user code. Below heap

always resides below 16M. See also anywhere heap,

initial heap, and additional heap.

binary expression. An expression containing two

operands and one operator.

binary stream. (1) An ordered sequence of

untranslated characters. (2) A sequence of characters

that corresponds on a one-to-one basis with the

characters in the file. No character translation is

performed on binary streams. IBM

bind. (1) To combine one or more control sections or

program modules into a single program module,

resolving references between them. (2) To assign virtual

storage addresses to external symbols.

binder. The program that processes the output of

language translators and compilers into an executable

program (load module or program object). It replaces

the linkage editor and batch loader.

bit field. A member of a structure or union that

contains a specified number of bits. IBM

bitwise operator. An operator that manipulates the

value of an object at the bit level.

blank character. (1) A graphic representation of the

space character. ANSI/ISO (2) A character that

represents an empty position in a graphic character

string. ISO Draft (3) One of the characters that belong

to the blank character class as defined via the

LC_CTYPE category in the current locale. In the POSIX

locale, a blank character is either a tab or a space

character. X/Open

block. (1) In programming languages, a compound

statement that coincides with the scope of at least one

of the declarations contained within it. A block may also

specify storage allocation or segment programs for

other purposes. ISO/JTC1 (2) A string of data elements

recorded or transmitted as a unit. The elements may be

characters, words or physical records. ISO Draft (3) The

unit of data transmitted to and from a device. Each

block contains one record, part of a record, or several

records.

block statement. In the C or C++ languages, a group

of data definitions, declarations, and statements

appearing between a left brace and a right brace that

are processed as a unit. The block statement is

considered to be a single C or C++ statement. IBM

boundary alignment. The position in main storage of

a fixed-length field, such as a halfword or doubleword,

on a byte-level boundary for that unit of information.

IBM

braces. The characters { (left brace) and } (right

brace), also known as curly braces. When used in the

phrase “enclosed in (curly) braces” the symbol {

immediately precedes the object to be enclosed, and }

immediately follows it. When describing these

characters in the portable character set, the names

<left-brace> and <right-brace> are used. X/Open

brackets. The characters [(left bracket) and] (right

bracket), also known as square brackets. When used in

the phrase “enclosed in (square) brackets” the symbol [

immediately precedes the object to be enclosed, and]

immediately follows it. When describing these

characters in the portable character set, the names

<left-bracket> and <right-bracket> are used. X/Open

break statement. A C or C++ control statement that

contains the keyword break and a semicolon. IBM It is

used to end an iterative or a switch statement by exiting

from it at any point other than the logical end. Control is

passed to the first statement after the iteration or switch

statement.

built-in. (1) A function that the compiler will

automatically inline instead of making the function call,

unless the programmer specifies not to inline. (2) In

programming languages, pertaining to a language

object that is declared by the definition of the

programming language; for example, the built-in function

SIN in PL/I, the predefined data type INTEGER in

FORTRAN. ISO/JTC1 Synonymous with predefined.

IBM

byte-oriented stream. See orientation of a stream.

C

C library. A system library that contains common C

language subroutines for file access, string operators,

character operations, memory allocation, and other

functions. IBM

C or C++ language statement. A C or C++ language

statement contains zero or more expressions. A block

statement begins with a { (left brace) symbol, ends with

a } (right brace) symbol, and contains any number of

statements.

 All C or C++ language statements, except block

statements, end with a ; (semicolon) symbol.

C++ class library. A collection of C++ classes.

C++ library. A system library that contains common

C++ language subroutines for file access, memory

allocation, and other functions.

call. To transfer control to a procedure, program,

routine, or subroutine. IBM

call chain. A trace of all active functions.

callable services. A set of services that can be

invoked by Language Environment-conforming high

level languages using the conventional Language

134 XL C/C++ for z/VM: User's Guide

Environment-defined call interface, and usable by all

programs sharing the Language Environment

conventions.

 Use of these services helps to decrease an application’s

dependence on the specific form and content of the

services delivered by any single operating system.

caller. A function that calls another function.

cancelability point. A specific point within the current

thread that is enabled to solicit cancel requests. This is

accomplished using the pthread_testintr() function.

carriage-return character. A character that in the

output stream indicates that printing should start at the

beginning of the same physical line in which the

carriage-return character occurred. The carriage-return

is the character designated by ’\r’ in the C and C++

languages. It is unspecified whether this character is the

exact sequence transmitted to an output device by the

system to accomplish the movement to the beginning of

the line. X/Open

CASE (Computer-Aided Software Engineering). A

set of tools or programs to help develop complex

applications. IBM

case clause. In a C or C++ switch statement, a CASE

label followed by any number of statements.

case label. The word case followed by a constant

integral expression and a colon. When the selector

evaluates the value of the constant expression, the

statements following the case label are processed.

cast expression. An expression that converts or

reinterprets its operand.

cast operator. The cast operator is used for explicit

type conversions.

cataloged procedures. A set of control statements

placed in a library and retrievable by name. IBM

catch block. A block associated with a try block that

receives control when an exception matching its

argument is thrown.

char specifier. A char is a built-in data type. In the

C++ language, char, signed char, and unsigned char

are all distinct data types.

character. (1) A letter, digit, or other symbol that is

used as part of the organization, control, or

representation of data. A character is often in the form

of a spatial arrangement of adjacent or connected

strokes. ANSI/ISO (2) A sequence of one or more bytes

representing a single graphic symbol or control code.

This term corresponds to the ISO C standard term

multibyte character (multibyte character), where a

single-byte character is a special case of the multibyte

character. Unlike the usage in the ISO C standard,

character here has no necessary relationship with

storage space, and byte is used when storage space is

discussed. X/Open ISO.1

character array. An array of type char. X/Open

character class. A named set of characters sharing

an attribute associated with the name of the class. The

classes and the characters that they contain are

dependent on the value of the LC_CTYPE category in

the current locale. X/Open

character constant. A string of any of the characters

that can be represented, usually enclosed in quotes.

character set. (1) A finite set of different characters

that is complete for a given purpose; for example, the

character set in ISO Standard 646, 7-bit Coded

Character Set for Information Processing Interchange.

ISO Draft (2) All the valid characters for a programming

language or for a computer system. IBM (3) A group of

characters used for a specific reason; for example, the

set of characters a printer can print. IBM See also

portable character set.

character special file. (1) A special file that provides

access to an input or output device. The character

interface is used for devices that do not use block I/O.

IBM (2) A file that refers to a device. One specific type

of character special file is a terminal device file. X/Open

ISO.1

character string. A contiguous sequence of

characters terminated by and including the first null

byte. X/Open

child. A node that is subordinate to another node in a

tree structure. Only the root node is not a child.

child enclave. The nested enclave created as a result

of certain commands being issued from a parent

enclave.

CICS (Customer Information Control System).

Pertaining to an IBM licensed program that enables

transactions entered at remote terminals to be

processed concurrently by user-written application

programs. It includes facilities for building, using, and

maintaining databases. IBM

class. (1) A C++ aggregate that may contain functions,

types, and user-defined operators in addition to data. A

class may be derived from another class, inheriting the

properties of its parent class. A class may restrict

access to its members. (2) A user-defined data type. A

class data type can contain both data representations

(data members) and functions (member functions).

class key. One of the C++ keywords: class, struct and

union.

class library. A collection of classes.

Glossary 135

class member operator. An operator used to access

class members through class objects or pointers to

class objects. The class member operators are:

 . -> .* ->*

class name. A unique identifier that names a class

type.

class scope. An indication that a name of a class can

be used only in a member function of that class.

class tag. Synonym for class name.

class template. A blueprint describing how a set of

related classes can be constructed.

class template declaration. A class template

declaration introduces the name of a class template and

specifies its template parameter list. A class template

declaration may optionally include a class template

definition.

class template definition. A class template definition

describes various characteristics of the class types that

are its specializations. These characteristics include the

names and types of data members of specializations,

the signatures and definitions of member functions,

accessibility of members, and base classes.

client program. A program that uses a class. The

program is said to be a client of the class.

CMS. Conversational Monitor System.

CMS extended parameter list. A type of parameter

list available in the CMS environment consisting of a

string composed exactly as the user typed it at the

terminal. There is no tokenization performed on the

string.

CMS tokenized parameter list. A type of parameter

list available in the CMS environment consisting of

8-byte tokens, folded to uppercase, terminating with a

doubleword of X’FF’. Not supported under the C/C+.

COBOL (common business-oriented language). A

high-level language, based on English, that is primarily

used for business applications.

coded character set. (1) A set of graphic characters

and their code point assignments. The set may contain

fewer characters than the total number of possible

characters: some code points may be unassigned. IBM

(2) A coded set whose elements are single characters;

for example, all characters of an alphabet. ISO Draft (3)

Loosely, a code. ANSI/ISO

code element set. (1) The result of applying a code to

all elements of a coded set, for example, all the

three-letter international representations of airport

names. ISO Draft (2) The result of applying rules that

map a numeric code value to each element of a

character set. An element of a character set may be

related to more than one numeric code value but the

reverse is not true. However, for state-dependent

encodings the relationship between numeric code

values to elements of a character set may be further

controlled by state information. The character set may

contain fewer elements than the total number of

possible numeric code values; that is, some code

values may be unassigned. X/Open (3) Synonym for

codeset.

code page. (1) An assignment of graphic characters

and control function meanings to all code points; for

example, assignment of characters and meanings to

256 code points for an 8-bit code, assignment of

characters and meanings to 128 code points for a 7-bit

code. (2) A particular assignment of hexadecimal

identifiers to graphic characters.

code point. (1) A representation of a unique character.

For example, in a single-byte character set each of 256

possible characters is represented by a one-byte code

point. (2) An identifier in an alert description that

represents a short unit of text. The code point is

replaced with the text by an alert display program.

codeset. Synonym for code element set. IBM

collating element. The smallest entity used to

determine the logical ordering of character or

wide-character strings. A collating element consists of

either a single character, or two or more characters

collating as a single entity. The value of the

LC_COLLATE category in the current locale determines

the current set of collating elements. X/Open

collating sequence. (1) A specified arrangement used

in sequencing. ISO/JTC1 ANSI/ISO (2) An ordering

assigned to a set of items, such that any two sets in

that assigned order can be collated. ANSI/ISO (3) The

relative ordering of collating elements as determined by

the setting of the LC_COLLATE category in the current

locale. The character order, as defined for the

LC_COLLATE category in the current locale, defines the

relative order of all collating elements, such that each

element occupies a unique position in the order. This is

the order used in ranges of characters and collating

elements in regular expressions and pattern matching.

In addition, the definition of the collating weights of

characters and collating elements uses collating

elements to represent their respective positions within

the collation sequence.

collation. The logical ordering of character or

wide-character strings according to defined precedence

rules. These rules identify a collation sequence between

the collating elements, and such additional rules that

can be used to order strings consisting or multiple

collating elements. X/Open

136 XL C/C++ for z/VM: User's Guide

collection. (1) An abstract class without any ordering,

element properties, or key properties. (2) In a general

sense, an implementation of an abstract data type for

storing elements.

Collection Class Library. A set of classes that

provide basic functions for collections, and can be used

as base classes.

column position. A unit of horizontal measure related

to characters in a line.

 It is assumed that each character in a character set has

an intrinsic column width independent of any output

device. Each printable character in the portable

character set has a column width of one. The standard

utilities, when used as described in this document set,

assume that all characters have integral column widths.

The column width of a character is not necessarily

related to the internal representation of the character

(numbers of bits or bytes).

The column position of a character in a line is defined

as one plus the sum of the column widths of the

preceding characters in the line. Column positions are

numbered starting from 1. X/Open

comma expression. An expression (not a function

argument list) that contains two or more operands

separated by commas. The compiler evaluates all

operands in the order specified, discarding all but the

last (rightmost). The value of the expression is the value

of the rightmost operand. Typically this is done to

produce side effects.

command. A request to perform an operation or run a

program. When parameters, arguments, flags, or other

operands are associated with a command, the resulting

character string is a single command.

command processor parameter list (CPPL). The

format of a TSO parameter list. When a TSO terminal

monitor application attaches a command processor,

register 1 contains a pointer to the CPPL, containing

addresses required by the command processor.

Common Business-Oriented Language. See

COBOL.

common expression elimination. Duplicated

expressions are eliminated by using the result of the

previous expression. This includes intermediate

expressions within expressions.

compilation unit. (1) A portion of a computer program

sufficiently complete to be compiled correctly. IBM (2) A

single compiled file and all its associated include files.

(3) An independently compilable sequence of high-level

language statements. Each high-level language product

has different rules for what makes up a compilation unit.

complete class name. The complete qualification of a

nested class name including all enclosing class names.

Complex Mathematics library. A C++ class library

that provides the facilities to manipulate complex

numbers and perform standard mathematical operations

on them.

computational independence. No data modified by

either a main task program or a parallel function is

examined or modified by a parallel function that might

be running simultaneously.

concrete class. (1) A class that is not abstract. (2) A

class defining objects that can be created.

condition. (1) A relational expression that can be

evaluated to a value of either true or false. IBM (2) An

exception that has been enabled, or recognized, by

Language Environment and thus is eligible to activate

user and language condition handlers. Any alteration to

the normal programmed flow of an application.

Conditions can be detected by the hardware/operating

system and result in an interrupt. They can also be

detected by language-specific generated code or

language library code.

conditional expression. A compound expression that

contains a condition (the first expression), an expression

to be evaluated if the condition has a nonzero value

(the second expression), and an expression to be

evaluated if the condition has the value zero (the third

expression).

condition handler. A user-written condition handler or

language-specific condition handler (such as a PL/I

ON-unit or C/C++ signal() function call) invoked by the

C/C++ condition manager to respond to conditions.

condition manager. Manages conditions in the

common execution environment by invoking various

user-written and language-specific condition handlers.

condition token. In Language Environment, a data

type consisting of 12 bytes (96 bits). The condition

token contains structured fields that indicate various

aspects of a condition including the severity, the

associated message number, and information that is

specific to a given instance of the condition.

const. (1) An attribute of a data object that declares

the object cannot be changed. (2) A keyword that allows

you to define a variable whose value does not change.

(3) A keyword that allows you to define a parameter that

is not changed by the function. (4) A keyword that

allows you to define a member function that does not

modify the state of the class for which it is defined.

constant. (1) In programming languages, a language

object that takes only one specific value. ISO/JTC1 (2)

A data item with a value that does not change. IBM

constant expression. An expression having a value

that can be determined during compilation and that

does not change during the running of the program. IBM

Glossary 137

constant propagation. An optimization technique

where constants used in an expression are combined

and new ones are generated. Mode conversions are

done to allow some intrinsic functions to be evaluated at

compile time.

constructed reentrancy. The attribute of applications

that contain external data and require additional

processing to make them reentrant. Contrast with

natural reentrancy.

constructor. A special C++ class member function

that has the same name as the class and is used to

create an object of that class.

control character. (1) A character whose occurrence

in a particular context specifies a control function. ISO

Draft (2) Synonymous with non-printing character. IBM

(3) A character, other than a graphic character, that

affects the recording, processing, transmission, or

interpretation of text. X/Open

control statement. (1) A statement that is used to

alter the continuous sequential execution of statements;

a control statement may be a conditional statement,

such as if, or an imperative statement, such as return.

(2) A statement that changes the path of execution.

controlling process. The session leader that

establishes the connection to the controlling terminal. If

the terminal ceases to be a controlling terminal for this

session, the session leader ceases to be the controlling

process. X/Open ISO.1

controlling terminal. A terminal that is associated with

a session. Each session may have at most one

controlling terminal associated with it, and a controlling

terminal is associated with exactly one session. Certain

input sequences from the controlling terminal cause

signals to be sent to all processes in the process group

associated with the controlling terminal. X/Open ISO.1

conversion. (1) In programming languages, the

transformation between values that represent the same

data item but belong to different data types. Information

may be lost because of conversion since accuracy of

data representation varies among different data types.

ISO/JTC1 (2) The process of changing from one

method of data processing to another or from one data

processing system to another. IBM (3) The process of

changing from one form of representation to another; for

example to change from decimal representation to

binary representation. IBM (4) A change in the type of a

value. For example, when you add values having

different data types, the compiler converts both values

to a common form before adding the values.

conversion descriptor. A per-process unique value

used to identify an open codeset conversion. X/Open

conversion function. A member function that

specifies a conversion from its class type to another

type.

coordinated universal time (UTC). Synonym for

Greenwich Mean Time (GMT). See GMT.

copy constructor. A constructor that copies a class

object of the same class type.

CPPL. See command processor parameter list.

CSECT (control section). The part of a program

specified by the programmer to be a relocatable unit, all

elements of which are to be loaded into adjoining main

storage locations.

Cross System Product. See CSP.

CSP (Cross System Product). A set of licensed

programs designed to permit the user to develop and

run applications using independently defined maps

(display and printer formats), data items (records,

working storage, files, and single items), and processes

(logic). The Cross System Product set consists of two

parts: Cross System Product/Application Development

(CSP/AD) and Cross System Product/Application

Execution (CSP/AE). IBM

current working directory. (1) A directory, associated

with a process, that is used in path name resolution for

path names that do not begin with a slash. X/Open

ISO.1 (2) In the OS/2® operating system, the first

directory in which the operating system looks for

programs and files and stores temporary files and

output. IBM (3) In the z/VM OpenExtensions

environment, a directory that is active and that can be

displayed. Relative path name resolution begins in the

current directory. IBM

cursor. A reference to an element at a specific

position in a data structure.

Customer Information Control System. See CICS.

c89 utility. A utility used to compile and bind an

application program from the z/VM OpenExtensions

shell.

D

data abstraction. A data type with a private

representation and a public set of operations (functions

or operators) which restrict access to that data type to

that set of operations. The C++ language uses the

concept of classes to implement data abstraction.

data definition (DD). (1) In the C and C++ languages,

a definition that describes a data object, reserves

storage for a data object, and can provide an initial

value for a data object. A data definition appears

outside a function or at the beginning of a block

statement. IBM (2) A program statement that describes

the features of, specifies relationships of, or establishes

context of, data. ANSI/ISO (3) A statement that is stored

138 XL C/C++ for z/VM: User's Guide

in the environment and that externally identifies a file

and the attributes with which it should be opened.

data definition name. See ddname.

data definition statement. See DD statement.

data member. The smallest possible piece of

complete data. Elements are composed of data

members.

data object. (1) A storage area used to hold a value.

(2) Anything that exists in storage and on which

operations can be performed, such as files, programs,

classes, or arrays. (3) In a program, an element of data

structure, such as a file, array, or operand, that is

needed for the execution of a program and that is

named or otherwise specified by the allowable character

set of the language in which a program is coded. IBM

data set. Under z/OS, a named collection of related

data records that is stored and retrieved by an assigned

name.

data stream. A continuous stream of data elements

being transmitted, or intended for transmission, in

character or binary-digit form, using a defined format.

IBM

data structure. The internal data representation of an

implementation.

data type. The properties and internal representation

that characterize data.

Data Window Services (DWS). Services provided as

part of the Callable Services Library that allow

manipulation of data objects such as VSAM linear data

sets and temporary data objects known as

TEMPSPACE.

DBCS (double-byte character set). A set of

characters in which each character is represented by 2

bytes. Languages such as Japanese, Chinese, and

Korean, which contain more symbols than can be

represented by 256 code points, require double-byte

character sets.

 Because each character requires 2 bytes, the typing,

display, and printing of DBCS characters requires

hardware and programs that support DBCS. IBM

ddname (data definition name). (1) The logical name

of a file within an application. The ddname provides the

means for the logical file to be connected to the

physical file. (2) The part of the data definition before

the equal sign. It is the name used in a call to fopen or

freopen to refer to the data definition stored in the

environment.

DD statement (data definition statement). (1) In

z/OS, serves as the connection between the logical

name of a file and the physical name of the file. (2) A

job control statement that defines a file to the operating

system, and is a request to the operating system for the

allocation of input/output resources.

dead code elimination. A process that eliminates

code that exists for calculations that are not necessary.

Code may be designated as dead by other optimization

techniques.

dead store elimination. A process that eliminates

unnecessary storage use in code. A store is deemed

unnecessary if the value stored is never referenced

again in the code.

decimal constant. (1) A numerical data type used in

standard arithmetic operations. (2) A number containing

any of the digits 0 through 9. IBM

decimal overflow. A condition that occurs when one

or more nonzero digits are lost because the destination

field in a decimal operation is too short to contain the

results.

declaration. (1) In the C and C++ languages, a

description that makes an external object or function

available to a function or a block statement. IBM (2)

Establishes the names and characteristics of data

objects and functions used in a program.

declarator. Designates a data object or function

declared. Initializations can be performed in a

declarator.

default argument. An argument that is declared with a

default value in a function prototype or declaration. If a

call to the function omits this argument, the default

value is used. Arguments with default values must be

the trailing arguments in a function prototype argument

list.

default clause. In the C or C++ languages, within a

switch statement, the keyword default followed by a

colon, and one or more statements. When the

conditions of the specified case labels in the switch

statement do not hold, the default clause is chosen. IBM

default constructor. A constructor that takes no

arguments, or, if it takes arguments, all its arguments

have default values.

default initialization. The initial value assigned to a

data object by the compiler if no initial value is specified

by the programmer.

default locale. (1) The C locale, which is always used

when no selection of locale is performed. (2) A system

default locale, named by locale-related environmental

variables.

define directive. A preprocessor directive that directs

the preprocessor to replace an identifier or macro

invocation with special code.

Glossary 139

definition. (1) A data description that reserves storage

and may provide an initial value. (2) A declaration that

allocates storage, and may initialize a data object or

specify the body of a function.

degree. The number of children of a node.

delete. (1) A C++ keyword that identifies a free storage

deallocation operator. (2) A C++ operator used to

destroy objects created by new.

demangling. The conversion of mangled names back

to their original source code names. During C++

compilation, identifiers such as function and static class

member names are mangled (encoded) with type and

scoping information to ensure type-safe linkage. These

mangled names appear in the object file and the final

executable file. Demangling (decoding) converts these

names back to their original names to make program

debugging easier. See also mangling.

deque. A queue that can have elements added and

removed at both ends. A double-ended queue.

dequeue. An operation that removes the first element

of a queue.

dereference. In the C and C++ languages, the

application of the unary operator * to a pointer to access

the object the pointer points to. Also known as

indirection.

derivation. In the C++ language, to derive a class,

called a derived class, from an existing class, called a

base class.

derived class. A class that inherits from a base class.

All members of the base class become members of the

derived class. You can add additional data members

and member functions to the derived class. A derived

class object can be manipulated as if it is a base class

object. The derived class can override virtual functions

of the base class.

descriptor. PL/I control block that holds information

such as string lengths, array subscript bounds, and area

sizes, and is passed from one PL/I routine to another

during Run-Time.

destructor. A special member function that has the

same name as its class, preceded by a tilde (~), and

that ″cleans up″ after an object of that class, for

example, freeing storage that was allocated when the

object was created. A destructor has no arguments and

no return type.

detach state attribute. An attribute associated with a

thread attribute object. This attribute has two possible

values:

0 Undetached. An undetached thread keeps its

resources after termination of the thread.

1 Detached. A detached thread has its resources

freed by the system after termination.

device. A computer peripheral or an object that

appears to the application as such. X/Open ISO.1

difference. For two sets A and B, the difference (A-B)

is the set of all elements in A but not in B. For bags,

there is an additional rule for duplicates: If bag P

contains an element m times and bag Q contains the

same element n times, then, if m>n, the difference

contains that element m-n times. If m≤n, the difference

contains that element zero times.

digraph. A combination of two keystrokes used to

represent unavailable characters in a C or C++ source

program. Digraphs are read as tokens during the

preprocessor phase.

directory. (1) In a hierarchical file system, a container

for files or other directories. IBM (2) The part of a

partitioned data set that describes the members in the

data set.

disabled signal. Synonym for enabled signal.

display. To direct the output to the user’s terminal. If

the output is not directed to the terminal, the results are

undefined. X/Open

DLL. See dynamic link library.

do statement. In the C and C++ compilers, a looping

statement that contains the keyword do, followed by a

statement (the action), the keyword while, and an

expression in parentheses (the condition). IBM

dot. The file name consisting of a single dot character

(.). X/Open ISO.1

double-byte character set. See DBCS.

double-precision. Pertaining to the use of two

computer words to represent a number in accordance

with the required precision. ISO/JTC1 ANSI/ISO

double-quote. The character ″, also known as

quotation mark. X/Open

 This character is named <quotation-mark> in the

portable character set.

doubleword. A contiguous sequence of bytes or

characters that comprises two computer words and is

capable of being addressed as a unit. IBM

DSA (dynamic storage area). An area of storage

obtained during the running of an application that

consists of a register save area and an area for

automatic data, such as program variables. DSAs are

generally allocated within Language

Environment-managed stack segments. DSAs are

added to the stack when a routine is entered and

140 XL C/C++ for z/VM: User's Guide

removed upon exit in a last in, first out (LIFO) manner.

In Language Environment, a DSA is known as a stack

frame.

dump. To copy data in a readable format from main or

auxiliary storage onto an external medium such as tape,

diskette, or printer. IBM

dynamic. Pertaining to an operation that occurs at the

time it is needed rather than at a predetermined or fixed

time. IBM

dynamic allocation. Assignment of system resources

to a program when the program is executed rather than

when it is loaded into main storage. IBM

dynamic binding. The act of resolving references to

external variables and functions at Run-Time. In C++,

dynamic binding is supported by using virtual functions.

dynamic link library (DLL). A file containing

executable code and data bound to a program at

Run-Time. The code and data in a dynamic link library

can be shared by several applications simultaneously.

Compiling code with the DLL option does not mean that

the produced executable will be a DLL. To create a

DLL, use #pragma export or the EXPORTALL compiler

option.

dynamic storage. Synonym for automatic storage.

dynamic storage area. See DSA.

E

EBCDIC. See extended binary-coded decimal

interchange code.

effective group ID. An attribute of a process that is

used in determining various permissions, including file

access permissions. This value is subject to change

during the process lifetime, as described in the exec

family of functions and setgid(). X/Open ISO.1

effective user ID. (1) The user ID associated with the

last authenticated user or the last setuid() program. It

is equal to either the real or the saved user ID. (2) The

current user ID, but not necessarily the user’s login ID;

for example, a user logged in under a login ID may

change to another user’s ID. The ID to which the user

changes becomes the effective user ID until the user

switches back to the original login ID. All discretionary

access decisions are based on the effective user ID.

IBM (3) An attribute of a process that is used in

determining various permissions, including file access

permissions. This value is subject to change during the

process lifetime, as described in exec and setuid().

X/Open ISO.1

elaborated type specifier. A specifier typically used in

an incomplete class declaration to qualify types that are

otherwise hidden.

element. The component of an array, subrange,

enumeration, or set.

element equality. A relation that determines if two

elements are equal.

element occurrence. A single instance of an element

in a collection. In a unique collection, element

occurrence is synonymous with element value.

element value. All the instances of an element with a

particular value in a collection. In a nonunique

collection, an element value may have more than one

occurrence. In a unique collection, element value is

synonymous with element occurrence.

else clause. The part of an if statement that contains

the word else, followed by a statement. The else clause

provides an action that is started when the if condition

evaluates to a value of zero (false). IBM

empty line. A line consisting of only a new-line

character. X/Open

empty string. (1) A string whose first byte is a null

byte. Synonymous with null string. X/Open (2) A

character array whose first element is a null character.

ISO.1

enabled signal. The occurrence of an enabled signal

results in the default system response or the execution

of an established signal handler. If disabled, the

occurrence of the signal is ignored.

encapsulation. Hiding the internal representation of

data objects and implementation details of functions

from the client program. This enables the end user to

focus on the use of data objects and functions without

having to know about their representation or

implementation.

enclave. In Language Environment, an independent

collection of routines, one of which is designated as the

main routine. An enclave is roughly analogous to a

program or run unit.

enqueue. (1) An operation that adds an element as

the last element to a queue. (2) Request control of a

serially reusable resource.

entry point. The address or label of the first

instruction that is executed when a routine is entered for

execution.

enumeration constant. In the C or C++ language, an

identifier, with an associated integer value, defined in an

enumerator. An enumeration constant may be used

anywhere an integer constant is allowed. IBM

enumeration data type. (1) In the Fortran, C, and

C++ language, a data type that represents a set of

values that a user defines. IBM (2) A type that

Glossary 141

represents integers and a set of enumeration constants.

Each enumeration constant has an associated integer

value.

enumeration tag. In the C and C++ language, the

identifier that names an enumeration data type. IBM

enumeration type. An enumeration type defines a set

of enumeration constants. In the C++ language, an

enumeration type is a distinct data type that is not an

integral type.

enumerator. In the C and C++ language, an

enumeration constant and its associated value. IBM

equivalence class. (1) A grouping of characters that

are considered equal for the purpose of collation; for

example, many languages place an uppercase

character in the same equivalence class as its

lowercase form, but some languages distinguish

between accented and unaccented character forms for

the purpose of collation. IBM (2) A set of collating

elements with the same primary collation weight.

 Elements in an equivalence class are typically elements

that naturally group together, such as all accented

letters based on the same base letter.

The collation order of elements within an equivalence

class is determined by the weights assigned on any

subsequent levels after the primary weight. X/Open

escape sequence. (1) A representation of a character.

An escape sequence contains the \ symbol followed by

one of the characters: a, b, f, n, r, t, v, ’, ", x,

\, or followed by one or more octal or hexadecimal

digits. (2) A sequence of characters that represent, for

example, non-printing characters, or the exact code

point value to be used to represent variant and

nonvariant characters regardless of code page. (3) In

the C and C++ language, an escape character followed

by one or more characters. The escape character

indicates that a different code, or a different coded

character set, is used to interpret the characters that

follow. Any member of the character set used at

Run-Time can be represented using an escape

sequence. (4) A character that is preceded by a

backslash character and is interpreted to have a special

meaning to the operating system. (5) A sequence sent

to a terminal to perform actions such as moving the

cursor, changing from normal to reverse video, and

clearing the screen. Synonymous with multibyte control.

IBM

exception. (1) Any user, logic, or system error

detected by a function that does not itself deal with the

error but passes the error on to a handling routine (also

called throwing the exception). (2) In programming

languages, an abnormal situation that may arise during

execution, that may cause a deviation from the normal

execution sequence, and for which facilities exist in a

programming language to define, raise, recognize,

ignore, and handle it; for example, (ON-) condition in

PL/I, exception in ADA. ISO/JTC1

exception handler. (1) Exception handlers are catch

blocks in C++ applications. Catch blocks catch

exceptions when they are thrown from a function

enclosed in a try block. Try blocks, catch blocks, and

throw expressions are the constructs used to implement

formal exception handling in C++ applications. (2) A set

of routines used to detect deadlock conditions or to

process abnormal condition processing. An exception

handler allows the normal running of processes to be

interrupted and resumed. IBM

executable. A load module or program object which

has yet to be loaded into memory for execution.

executable file. A regular file acceptable as a new

process image file by the equivalent of the exec family

of functions, and thus usable as one form of a utility.

The standard utilities described as compilers can

produce executable files, but other unspecified methods

of producing executable files may also be provided. The

internal format of an executable file is unspecified, but a

conforming application cannot assume an executable

file is a text file. X/Open

executable program. A program that has been

link-edited and therefore can be run in a processor. IBM

extended binary-coded data interchange code

(EBCDIC). A coded character set of 256 8-bit

characters. IBM

extended-precision. Pertaining to the use of more

than two computer words to represent a floating point

number in accordance with the required precision. In

z/VM four computer words are used for an

extended-precision number.

extension. (1) An element or function not included in

the standard language. (2) File name extension.

external data definition. A description of a variable

appearing outside a function. It causes the system to

allocate storage for that variable and makes that

variable accessible to all functions that follow the

definition and are located in the same file as the

definition. IBM

extern storage class specifier. A specifier that

enables the programmer to declare objects and

functions that several source files can use.

F

feature test macro (FTM). A macro (#define) used to

determine whether a particular set of features will be

included from a header. X/Open ISO.1

FIFO special file. A type of file with the property that

data written to such a file is read on a first-in-first-out

142 XL C/C++ for z/VM: User's Guide

basis. Other characteristics of FIFOs are described in

open(), read(), write(), and lseek(). X/Open ISO.1

file access permissions. The standard file access

control mechanism uses the file permission bits. The

bits are set at the time of file creation by functions such

as open(), creat(), mkdir(), and mkfifo() and can be

changed by chmod(). The bits are read by stat() or

fstat(). X/Open

file descriptor. (1) A positive integer that the system

uses instead of the file name to identify an open file. (2)

A per-process unique, non-negative integer used to

identify an open file for the purpose of file access. ISO.1

 The value of a file descriptor is from zero to

{OPEN_MAX}--which is defined in <limits.h>. A process

can have no more than {OPEN_MAX} file descriptors

open simultaneously. File descriptors may also be used

to implement directory streams. X/Open

file mode. An object containing the file mode bits and

file type of a file, as described in <sys/stat.h>. X/Open

file mode bits. A file’s file permission bits,

set-user-ID-on-execution bit (S_ISUID) and

set-group-ID-on-execution bit (S_ISGID). X/Open

file permission bits. Information about a file that is

used, along with other information, to determine if a

process has read, write, or execute/search permission

to a file. The bits are divided into three parts: owner,

group, and other. Each part is used with the

corresponding file class of process. These bits are

contained in the file mode, as described in

<sys/stat.h>. The detailed usage of the file permission

bits is described in file access permissions. X/Open

ISO.1

file scope. A name declared outside all blocks,

classes, and function declarations has file scope and

can be used after the point of declaration in a source

file.

filter. A command whose operation consists of reading

data from standard input or a list of input files and

writing data to standard output. Typically, its function is

to perform some transformation on the data stream.

X/Open

first element. The element visited first in an iteration

over a collection. Each collection has its own definition

for first element. For example, the first element of a

sorted set is the element with the smallest value.

flat collection. A collection that has no hierarchical

structure.

float constant. (1) A constant representing a

nonintegral number. (2) A number containing a decimal

point, an exponent, or both a decimal point and an

exponent. The exponent contains an e or E, an optional

sign (+ or -), and one or more digits (0 through 9). IBM

for statement. A looping statement that contains the

word for followed by a for-initializing-statement, an

optional condition, a semicolon, and an optional

expression, all enclosed in parentheses.

foreground process. (1) A process that must run to

completion before another command is issued. The

foreground process is in the foreground process group,

which is the group that receives the signals generated

by a terminal. IBM (2) A process that is a member of a

foreground process group. X/Open ISO.1

foreground process group. (1) The group that

receives the signals generated by a terminal. IBM (2) A

process group whose member processes have certain

privileges, denied to processes in background process

groups, when accessing their controlling terminal. Each

session that has established a connection with a

controlling terminal has exactly one process group of

the session as the foreground process group of that

controlling terminal. X/Open ISO.1

foreground process group ID. The process group ID

of the foreground process group. X/Open ISO.1

form-feed character. A character in the output stream

that indicates that printing should start on the next page

of an output device. The formfeed is the character

designated by ’\f’ in the C and C++ language. If the

formfeed is not the first character of an output line, the

result is unspecified. It is unspecified whether this

character is the exact sequence transmitted to an output

device by the system to accomplish the movement to

the next page. X/Open

forward declaration. A declaration of a class or

function made earlier in a compilation unit, so that the

declared class or function can be used before it has

been defined.

freestanding application. (1) An application that is

created to run without the run-time environment or

library with which it was developed. (2) A C/C++

application that does not use the services of the

dynamic C/C++ run-time library or of the Language

Environment. Under C support, this ability is a feature of

the System Programming C support.

free store. Dynamically allocated memory. New and

delete are used to allocate and deallocate free store.

friend class. A class in which all the member

functions are granted access to the private and

protected members of another class. It is named in the

declaration of another class and uses the keyword

friend as a prefix to the class. For example, the

following source code makes all the functions and data

in class you friends of class me:

 class me {

 friend class you;

 // ...

 };

Glossary 143

friend function. A function that is granted access to

the private and protected parts of a class. It is named in

the declaration of the other class with the prefix friend.

function. A named group of statements that can be

called and evaluated and can return a value to the

calling statement. IBM

function call. An expression that moves the path of

execution from the current function to a specified

function and evaluates to the return value provided by

the called function. A function call contains the name of

the function to which control moves and a

parenthesized list of values. IBM

function declarator. The part of a function definition

that names the function, provides additional information

about the return value of the function, and lists the

function parameters. IBM

function definition. The complete description of a

function. A function definition contains a sequence of

specifiers (storage class, optional type, inline, virtual,

optional friend), a function declarator, optional

constructor-initializers, parameter declarations, optional

const, and the block statement. Inline, virtual, friend,

and const are not available with C.

function prototype. A function declaration that

provides type information for each parameter. It is the

first line of the function (header) followed by a

semicolon (;). The declaration is required by the

compiler at the time that the function is declared, so that

the compiler can check the type.

function scope. Labels that are declared in a function

have function scope and can be used anywhere in that

function after their declaration.

function template. Provides a blueprint describing

how a set of related individual functions can be

constructed.

G

Generalization. Refers to a class, function, or static

data member which derives its definition from a

template. An instantiation of a template function would

be a generalization.

Generalized Object File Format (GOFF). It is the

strategic object module format for S/390®. It extends the

capabilities of object modules to contain more

information than current object modules. It removes the

limitations of the previous object module format and

supports future enhancements. It is required for

XPLINK.

generic class. Synonym for class templates.

global. Pertaining to information available to more

than one program or subroutine. IBM

global scope. Synonym for file scope.

global variable. A symbol defined in one program

module that is used in other independently compiled

program modules.

GMT (Greenwich Mean Time). The solar time at the

meridian of Greenwich, formerly used as the prime

basis of standard time throughout the world. GMT has

been superseded by coordinated universal time (UTC).

graphic character. (1) A visual representation of a

character, other than a control character, that is

normally produced by writing, printing, or displaying.

ISO Draft (2) A character that can be displayed or

printed. IBM

Graphical Data Display Manager (GDDM®).

Pertaining to an IBM licensed program that provides a

group of routines that allows pictures to be defined and

displayed procedurally through function routines that

correspond to graphic primitives. IBM

Greenwich Mean Time. See GMT.

group ID. (1) A non-negative integer that is used to

identify a group of system users. Each system user is a

member of at least one group. When the identity of a

group is associated with a process, a group ID value is

referred to as a real group ID, an effective group ID,

one of the supplementary group IDs or a saved

set-group-ID. X/Open (2) A non-negative integer, which

can be contained in an object of type gid_t, that is used

to identify a group of system users. ISO.1

H

halfword. A contiguous sequence of bytes or

characters that constitutes half a computer word and

can be addressed as a unit. IBM

hash function. A function that determines which

category, or bucket, to put an element in. A hash

function is needed when implementing a hash table.

hash table. (1) A data structure that divides all

elements into (preferably) equal-sized categories, or

buckets, to allow quick access to the elements. The

hash function determines which bucket an element

belongs in. (2) A table of information that is accessed by

way of a shortened search key (that hash value). Using

a hash table minimizes average search time.

header file. A text file that contains declarations used

by a group of functions, programs, or users.

heap. An unordered flat collection that allows duplicate

elements.

heap storage. An area of storage used for allocation

of storage whose lifetime is not related to the execution

of the current routine. The heap consists of the initial

heap segment and zero or more increments.

144 XL C/C++ for z/VM: User's Guide

hexadecimal constant. A constant, usually starting

with special characters, that contains only hexadecimal

digits. Three examples for the hexadecimal constant

with value 0 would be ’\x00’, ’0x0’, or ’0X00’.

High Level Assembler. An IBM licensed program.

Translates symbolic assembler language into binary

machine language.

hiperspace memory file. An IBM file used under z/OS

to deal with memory files as large as 2 gigabytes. IBM

HLASM. See High Level Assembler.

hooks. Instructions inserted into a program by a

compiler at compile-time. Using hooks, you can set

break-points to instruct the Debug Tool to gain control of

the program at selected points during its execution.

hybrid code. Program statements that have not been

internationalized with respect to code page, especially

where data constants contain variant characters. Such

statements can be found in applications written in older

implementations of MVS, which required syntax

statements to be written using code page IBM-1047

exclusively. Such applications cannot be converted from

one code page to another using iconv().

I

I18N. Abbreviation for internationalization.

identifier. (1) One or more characters used to identify

or name a data element and possibly to indicate certain

properties of that data element. ANSI/ISO (2) In

programming languages, a token that names a data

object such as a variable, an array, a record, a

subprogram, or a function. ANSI/ISO (3) A sequence of

letters, digits, and underscores used to identify a data

object or function. IBM

if statement. A conditional statement that contains the

keyword if, followed by an expression in parentheses

(the condition), a statement (the action), and an optional

else clause (the alternative action). IBM

ILC (interlanguage call). A function call made by one

language to a function coded in another language.

Interlanguage calls are used to communicate between

programs written in different languages.

ILC (interlanguage communication). The ability of

routines written in different programming languages to

communicate. ILC support enables the application writer

to readily build applications from component routines

written in a variety of languages.

implementation-defined behavior. Application

behavior that is not defined by the standards. The

implementing compiler and library defines this behavior

when a program contains correct program constructs or

uses correct data. Programs that rely on

implementation-defined behavior may behave differently

on different C or C++ implementations. Refer to the

z/OS XL C/C++ documents for information about

implementation-defined behavior in the z/OS and z/VM

C/C++ environment. Contrast with unspecified behavior

and undefined behavior.

IMS™ (Information Management System). Pertaining

to an IBM database/data communication (DB/DC)

system that can manage complex databases and

networks. IBM

include directive. A preprocessor directive that

causes the preprocessor to replace the statement with

the contents of a specified file.

include file. See header file.

include statement. In C/C++, a preprocessor

statement that causes the preprocessor to replace the

statement with the contents of a specified file. IBM

incomplete class declaration. A class declaration

that does not define any members of a class. Until a

class is fully declared, or defined, you can only use the

class name where the size of the class is not required.

Typically an incomplete class declaration is used as a

forward declaration.

incomplete type. A type that has no value or meaning

when it is first declared. There are three incomplete

types: void, arrays of unknown size and structures and

unions of unspecified content. A void type can never be

completed. Arrays of unknown size and structures or

unions of unspecified content can be completed in

further declarations.

indirection. (1) A mechanism for connecting objects

by storing, in one object, a reference to another object.

(2) In the C and C++ languages, the application of the

unary operator * to a pointer to access the object to

which the pointer points.

indirection class. Synonym for reference class.

induction variable. It is a controlling variable of a

loop.

inheritance. A technique that allows the use of an

existing class as the base for creating other classes.

initial heap. The C/C++ heap controlled by the HEAP

run-time option and designated by a heap_id of 0. The

initial heap contains dynamically allocated user data.

initializer. An expression used to initialize data

objects. The C++ language, supports the following types

of initializers:

v An expression followed by an assignment operator

that is used to initialize fundamental data type objects

or class objects that contain copy constructors.

Glossary 145

v A parenthesized expression list that is used to

initialize base classes and members that use

constructors.

Both the C and C++ languages support an expression

enclosed in braces ({ }), that is used to initialize

aggregates.

inlined function. A function whose actual code

replaces a function call. A function that is both declared

and defined in a class definition is an example of an

inline function. Another example is one which you

explicitly declared inline by using the keyword inline.

Both member and non-member functions can be inlined.

input stream. A sequence of control statements and

data submitted to a system from an input unit.

Synonymous with input job stream, job input stream.

IBM

instance. An object-oriented programming term

synonymous with object. An instance is a particular

instantiation of a data type. It is simply a region of

storage that contains a value or group of values. For

example, if a class box is previously defined, two

instances of a class box could be instantiated with the

declaration: box box1, box2;

instantiate. To create or generate a particular instance

or object of a data type. For example, an instance box1

of class box could be instantiated with the declaration:

box box1;

instruction. A program statement that specifies an

operation to be performed by the computer, along with

the values or locations of operands. This statement

represents the programmer’s request to the processor

to perform a specific operation.

instruction scheduling. An optimization technique

that reorders instructions in code to minimize execution

time.

integer constant. A decimal, octal, or hexadecimal

constant.

integral object. A character object, an object having

an enumeration type, an object having variations of the

type int, or an object that is a bit field.

Interactive System Productivity Facility. See ISPF.

interlanguage call. See ILC (interlanguage call).

interlanguage communication. See ILC

(interlanguage communication).

internationalization. The capability of a computer

program to adapt to the requirements of different native

languages, local customs, and coded character sets.

X/Open

 Synonymous with I18N.

interoperability. The capability to communicate,

execute programs, or transfer data among various

functional units in a way that requires the user to have

little or no knowledge of the unique characteristics of

those units.

Interprocedural Analysis. See IPA.

interprocess communication. (1) The exchange of

information between processes or threads through

semaphores, queues, and shared memory. (2) The

process by which programs communicate data to each

other to synchronize their activities. Semaphores,

signals, and internal message queues are common

methods of inter-process communication.

I/O Stream library. A class library that provides the

facilities to deal with many varieties of input and output.

IPA (Interprocedural Analysis). A process for

performing optimizations across compilation units.

ISO (International Standards Organization). An

organization of national standards bodies from various

countries established to promote development of

standards to facilitate international exchange of goods

and services, and develop cooperation in intellectual,

scientific, technological, and economic activity. IBM

ISPF (Interactive System Productivity Facility). An

IBM licensed program that serves as a full-screen editor

and dialogue manager. Used for writing application

programs, it provides a means of generating standard

screen panels and interactive dialogues between the

application programmer and terminal user. (ISPF)

iteration. The process of repeatedly applying a

function to a series of elements in a collection until

some condition is satisfied.

J

JCL (job control language). A control language used

to identify a job to an operating system and to describe

the job’s requirement. IBM

job control. A facility that allows users to selectively

stop (suspend) the execution of a process and continue

(resume) their execution at a later point.

 The user typically employs this facility via the interactive

interface jointly supplied by the terminal I/O driver and a

command interpreter. X/Open ISO.1

K

keyword. (1) A predefined word reserved for the C

and C++ languages, that may not be used as an

identifier. (2) A symbol that identifies a parameter in

JCL.

146 XL C/C++ for z/VM: User's Guide

kind attribute. An attribute for a mutex attribute

object. This attribute’s value determines whether the

mutex can be locked once or more than once for a

thread and whether state changes to the mutex will be

reported to the debug interface.

L

L-name. An external name in an object module

produced by compiling with the LONGNAME option.

label. An identifier within or attached to a set of data

elements. ISO Draft

Language Environment. Pertaining to an IBM

software product that provides a common run-time

environment and run-time services to applications

compiled by Language Environment-conforming

compilers.

last element. The element visited last in an iteration

over a collection. Each collection has its own definition

for last element. For example, the last element of a

sorted set is the element with the largest value.

late binding. Allowing the system to determine the

specific class of the object and invoke the appropriate

function implementations at Run-Time. Late binding or

dynamic binding hides the differences between a group

of related classes from the application program.

leaves. Nodes without children. Synonymous with

terminals.

lexically. Relating to the left-to-right order of units.

library. (1) A collection of functions, calls, subroutines,

or other data. IBM (2) A set of object modules that can

be specified in a link command.

line. A sequence of zero or more non-new-line

characters plus a terminating new-line character.

X/Open

link. To interconnect items of data or portions of one

or more computer programs; for example, linking of

object programs by a linkage editor to produce an

executable file.

linkage editor. Synonym for linker. The linkage editor

has been replaced by the binder for the MVS/ESA™,

OS/390®, z/OS and z/VM CMS operating systems. See

binder.

Linkage. Refers to the binding between a reference

and a definition. A function has internal linkage if the

function is defined inline as part of the class, is declared

with the inline keyword, or is a non-member function

declared with the static keyword. All other functions

have external linkage.

linker. A computer program for creating load modules

from one or more object modules by resolving cross

references among the modules and, if necessary,

adjusting addresses. IBM

literal. (1) In programming languages, a lexical unit

that directly represents a value; for example, 14

represents the integer fourteen, ″APRIL″ represents the

string of characters APRIL, 3.0005E2 represents the

number 300.05. ISO/JTC1 (2) A symbol or a quantity in

a source program that is itself data, rather than a

reference to data. IBM (3) A character string whose

value is given by the characters themselves; for

example, the numeric literal 7 has the value 7, and the

character literal CHARACTERS has the value

CHARACTERS. IBM

loader. A routine, commonly a computer program, that

reads data into main storage. ANSI/ISO

load module. All or part of a computer program in a

form suitable for loading into main storage for execution.

A load module is usually the output of a linkage editor.

ISO Draft

local. (1) In programming languages, pertaining to the

relationship between a language object and a block

such that the language object has a scope contained in

that block. ISO/JTC1 (2) Pertaining to that which is

defined and used only in one subdivision of a computer

program. ANSI/ISO

local customs. The conventions of a geographical

area or territory for such things as date, time, and

currency formats. X/Open

locale. The definition of the subset of a user’s

environment that depends on language and cultural

conventions. X/Open

localization. The process of establishing information

within a computer system specific to the operation of

particular native languages, local customs, and coded

character sets. X/Open

local scope. A name declared in a block has scope

within the block, and can therefore only be used in that

block.

Long name. An external name C++ name in an object

module, or and external name in an object module

created by the C compiler when the LONGNAME option is

used. Long names are up to 1024 characters long and

may contain both upper-case and lower-case

characters.

lvalue. An expression that represents a data object

that can be both examined and altered.

Glossary 147

M

macro. An identifier followed by arguments (may be a

parenthesized list of arguments) that the preprocessor

replaces with the replacement code located in a

preprocessor #define directive.

macro call. Synonym for macro.

macro instruction. Synonym for macro.

main function. An external function with the identifier

main that is the first user function--aside from exit

routines and C++ static object constructors--to get

control when program execution begins. Each C and

C++ program must have exactly one function named

main.

makefile. A text file containing a list of your

application’s parts. The make utility uses makefiles to

maintain application parts and dependencies.

make utility. Maintains all of the parts and

dependencies for your application. The make utility uses

a makefile to keep the parts of your program

synchronized. If one part of your application changes,

the make utility updates all other files that depend on

the changed part. This utility is available under the z/VM

OpenExtensions shell and by default, uses the c89

utility to recompile and bind your application.

mangling. The encoding during compilation of

identifiers such as function and variable names to

include type and scope information. These mangled

names ensure type-safe linkage. See also demangling.

manipulator. A value that can be inserted into streams

or extracted from streams to affect or query the

behavior of the stream.

mask. A pattern of characters that controls the

keeping, deleting, or testing of portions of another

pattern of characters. ISO/JTC1 ANSI/ISO

member. A data object or function in a structure,

union, or class. Members can also be classes,

enumerations, bit fields, and type names.

member function. (1) An operator or function that is

declared as a member of a class. A member function

has access to the private and protected data members

and member functions of objects of its class. Member

functions are also called methods. (2) A function that

performs operations on a class.

method. In the C++ language, a synonym for member

function.

method file. (1) A file that allows users to indicate to

the localedef utility where to look for user-provided

methods for processing user-designed codepages. (2)

For ASCII locales, a file that defines the method

functions to be used by C Run-Time locale-sensitive

interfaces. A method file also identifies where the

method functions can be found. IBM supplies several

method files used to create its standard set of ASCII

locales. Other method files can be created to support

customized or user-created codepages. Such

customized method files replace IBM-supplied charmap

method functions with user-written functions.

migrate. To move to a changed operating

environment, usually to a new release or version of a

system. IBM

mode. A collection of attributes that specifies a file’s

type and its access permissions. X/Open ISO.1

module. A program unit that usually performs a

particular function or related functions, and that is

distinct and identifiable with respect to compiling,

combining with other units, and loading.

multibyte character. A mixture of single-byte

characters from a single-byte character set and

double-byte characters from a double-byte character

set.

multicharacter collating element. A sequence of two

or more characters that collate as an entity. For

example, in some coded character sets, an accented

character is represented by a non-spacing accent,

followed by the letter. Other examples are the Spanish

elements ch and ll. X/Open

multiple inheritance. An object-oriented programming

technique implemented in the C++ language through

derivation, in which the derived class inherits members

from more than one base class.

multitasking. A mode of operation that allows

concurrent performance, or interleaved execution of two

or more tasks. ISO/JTC1 ANSI/ISO

mutex. A flag used by a semaphore to protect shared

resources. The mutex is locked and unlocked by

threads in a program. A mutex can only be locked by

one thread at a time and can only be unlocked by the

same thread that locked it. The current owner of a

mutex is the thread that it is currently locked by. An

unlocked mutex has no current owner.

mutex attribute object. Allows the user to manage

the characteristics of mutexes in their application by

defining a set of values to be used for the mutex during

its creation. A mutex attribute object allows the user to

create many mutexes with the same set of

characteristics without redefining the same set of

characteristics for each mutex created.

mutex object. Used to identify a mutex.

148 XL C/C++ for z/VM: User's Guide

N

namespace. A category used to group similar types of

identifiers.

named pipe. A FIFO file. Named pipes allow transfer

of data between processes in a FIFO manner and

synchronization of process execution. Allows processes

to communicate even though they do not know what

processes are on the other end of the pipe.

natural reentrancy. A program that contains no

writable static and requires no additional processing to

make it reentrant is considered naturally reentrant.

nested class. A class defined within the scope of

another class.

nested enclave. A new enclave created by an existing

enclave. The nested enclave that is created must be a

new main routine within the process. See also child

enclave and parent enclave.

newline character. A character that in the output

stream indicates that printing should start at the

beginning of the next line. The newline character is

designated by ’\n’ in the C and C++ language. It is

unspecified whether this character is the exact

sequence transmitted to an output device by the system

to accomplish the movement to the next line. X/Open

nickname. Synonym for alias.

non-printing character. See control character.

NULL. In C, a pointer that does not point to a data

object. IBM

null character (NUL). The ASCII or EBCDIC character

’\0’ with the hex value 00, all bits turned off. It is used to

represent the absence of a printed or displayed

character. This character is named <NUL> in the

portable character set.

null pointer. The value that is obtained by converting

the number 0 into a pointer; for example, (void *) 0.

The C and C++ languages guarantee that this value will

not match that of any legitimate pointer, so it is used by

many functions that return pointers to indicate an error.

X/Open

null statement. A C or C++ statement that consists

solely of a semicolon.

null string. (1) A string whose first byte is a null byte.

Synonymous with empty string. X/Open (2) A character

array whose first element is a null character. ISO.1

null value. A parameter position for which no value is

specified. IBM

null wide-character code. A wide-character code with

all bits set to zero. X/Open

number sign. The character #, also known as pound

sign and hash sign. This character is named

<number-sign> in the portable character set.

O

object. (1) A region of storage. An object is created

when a variable is defined. An object is destroyed when

it goes out of scope. (See also instance.) (2) In

object-oriented design or programming, an abstraction

consisting of data and the operations associated with

that data. See also class. IBM (3) An instance of a

class.

object code. Machine-executable instructions, usually

generated by a compiler from source code written in a

higher level language (such as the C++ language). For

programs that must be linked, object code consists of

relocatable machine code.

object module. (1) All or part of an object program

sufficiently complete for linking. Assemblers and

compilers usually produce object modules. ISO Draft (2)

A set of instructions in machine language produced by a

compiler from a source program. IBM

object-oriented programming. A programming

approach based on the concepts of data abstraction

and inheritance. Unlike procedural programming

techniques, object-oriented programming concentrates

not on how something is accomplished, but on what

data objects comprise the problem and how they are

manipulated.

octal constant. The digit 0 (zero) followed by any

digits 0 through 7.

open file. A file that is currently associated with a file

descriptor. X/Open ISO.1

z/VM OpenExtensions. Pertaining to z/VM

OpenExtensions, a part of the z/VM operating system. It

consists of a POSIX system Application Programming

Interface for the C language, a shell and utilities, and a

dbx debugger, all in conformance to IEEE POSIX

standards (ISO 9945-1: 1990/IEEE POSIX 1003.1-1990,

IEEE POSIX 1003.1a, IEEE POSIX 1003.2, and IEEE

POSIX 1003.4a).

operand. An entity on which an operation is

performed. ISO/JTC1 ANSI/ISO

operating system (OS). Software that controls

functions such as resource allocation, scheduling,

input/output control, and data management.

operator function. An overloaded operator that is

either a member of a class or that takes at least one

argument that is a class type or a reference to a class

type.

Glossary 149

operator precedence. In programming languages, an

order relation defining the sequence of the application

of operators within an expression. ISO/JTC1

orientation of a stream. After application of an input

or output function to a stream, it becomes either

byte-oriented or wide-oriented. A byte-oriented stream is

a stream that had a byte input or output function applied

to it when it had no orientation. A wide-oriented stream

is a stream that had a wide character input or output

function applied to it when it had no orientation. A

stream has no orientation when it has been associated

with an external file but has not had any operations

performed on it.

overflow. (1) A condition that occurs when a portion of

the result of an operation exceeds the capacity of the

intended unit of storage. (2) That portion of an operation

that exceeds the capacity of the intended unit of

storage. IBM

overlay. The technique of repeatedly using the same

areas of internal storage during different stages of a

program. ANSI/ISO Unions are used to accomplish this

in C and C++.

overloading. An object-oriented programming

technique that allows you to redefine functions and most

standard C++ operators when the functions and

operators are used with class types.

P

pack. To store data in a compact form in such a way

that the original form can be recovered.

parameter. (1) In the C and C++ languages, an object

declared as part of a function declaration or definition

that acquires a value on entry to the function, or an

identifier following the macro name in a function-like

macro definition. X/Open (2) Data passed between

programs or procedures. IBM

parameter declaration. A description of a value that a

function receives. A parameter declaration determines

the storage class and the data type of the value.

parent enclave. The enclave that issues a call to

system services or language constructs to create a

nested or child enclave. See also child enclave and

nested enclave.

parent process. (1) The program that originates the

creation of other processes by means of spawn or exec

function calls. See also child process. (2) A process that

creates other processes.

parent process ID. (1) An attribute of a new process

identifying the parent of the process. The parent

process ID of a process is the process ID of its creator,

for the lifetime of the creator. After the creator’s lifetime

has ended, the parent process ID is the process ID of

an implementation-dependent system process. X/Open

(2) An attribute of a new process after it is created by a

currently active process. ISO.1

partitioned concatenation. Specifying multiple PDSs

or PDSEs under one ddname. The concatenated data

sets act as one big PDS or PDSE and access can be

made to any member with a unique name. An attempted

access to a member whose name occurs more than

once in the concatenated data sets, returns the first

member with that name found in the entire

concatenation.

partitioned data set (PDS). A data set in direct

access storage that is divided into partitions, called

members, each of which can contain a program, part of

a program, or data. IBM

path name. (1) A string that is used to identify a file. A

path name consists of, at most, {PATH_MAX} bytes,

including the terminating null character. It has an

optional beginning slash, followed by zero or more file

names separated by slashes. If the path name refers to

a directory, it may also have one or more trailing

slashes. Multiple successive slashes are treated as one

slash. A path name that begins with two successive

slashes may be interpreted in an implementation-
dependent manner, although more than two leading

slashes are treated as a single slash. The interpretation

of the path name is described in path name resolution.

ISO.1 (2) A file name specifying all directories leading to

the file.

path name resolution. Path name resolution is

performed for a process to resolve a path name to a

particular file in a file hierarchy. There may be multiple

path names that resolve to the same file. X/Open

pattern. A sequence of characters used either with

regular expression notation or for path name expansion,

as a means of selecting various characters strings or

path names, respectively. The syntaxes of the two

patterns are similar, but not identical. X/Open

period. The character (.). The term period is

contrasted against dot, which is used to describe a

specific directory entry. This character is named

<period> in the portable character set.

permissions. Codes that determine how a file can be

used by any users who work on the system. See also

file access permissions. IBM

persistent environment. A program can explicitly

establish a persistent environment, direct functions to it,

and explicitly terminate it.

pointer. In the C and C++ languages, a variable that

holds the address of a data object or a function. IBM

pointer class. A class that implements pointers.

150 XL C/C++ for z/VM: User's Guide

pointer to member. An operator used to access the

address of non-static members of a class.

polymorphism. The technique of taking an abstract

view of an object or function and using any concrete

objects or arguments that are derived from this abstract

view.

portable character set. The set of characters

specified in POSIX 1003.2, section 2.4:

 <NUL>

 <alert>

 <backspace>

 <tab>

 <newline>

 <vertical-tab>

 <form-feed>

 <carriage-return>

 <space>

 <exclamation-mark> !

 <quotation-mark> "

 <number-sign> #

 <dollar-sign> $

 <percent-sign> %

 <ampersand> &

 <apostrophe> ’

 <left-parenthesis> (

 <right-parenthesis>)

 <asterisk> *

 <plus-sign> +

 <comma> ,

 <hyphen> -

 <hyphen-minus> -

 <period> .

 <slash> /

 <zero> 0

 <one> 1

 <two> 2

 <three> 3

 <four> 4

 <five> 5

 <six> 6

 <seven> 7

 <eight> 8

 <nine> 9

 <colon> :

 <semicolon> ;

 <less-than-sign> <

 <equals-sign> =

 <greater-than-sign> >

 <question-mark> ?

 <commercial-at> @

 <A> A

 B

 <C> C

 <D> D

 <E> E

 <F> F

 <G> G

 <H> H

 <I> I

 <J> J

 <K> K

 <L> L

 <M> M

 <N> N

 <O> O

 <P> P

 <Q> Q

 <R> R

 <S> S

 <T> T

 <U> U

 <V> V

 <W> W

 <X> X

 <Y> Y

 <Z> Z

 <left-square-bracket> [

 <backslash> \

 <reverse-solidus> \

 <right-square-bracket>]

 <circumflex> ^

 <circumflex-accent> ^

 <underscore> _

 <low-line> _

 <grave-accent> `

 <a> a

 b

 <c> c

 <d> d

 <e> e

 <f> f

 <g> g

 <h> h

 <i> i

 <j> j

 <k> k

 <l> l

 <m> m

 <n> n

 <o> o

 <p> p

 <q> q

 <r> r

 <s> s

 <t> t

 <u> u

 <v> v

 <w> w

 <x> x

 <y> y

 <z> z

 <left-brace> {

 <left-curly-bracket> {

 <vertical-line> |

 <right-brace> }

 <right-curly-bracket> }

 <tilde> ~

portable file name character set. The set of

characters from which portable file names are

constructed. For a file name to be portable across

implementations conforming to the ISO POSIX-1

standard and to ISO/IEC 9945, it must consists only of

the following characters:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m n o p q r s t u v w x y z

0 1 2 3 4 5 6 7 8 9 . _ -

Glossary 151

The last three characters are the period, underscore,

and hyphen characters, respectively. The hyphen must

not be used as the first character of a portable file

name. Upper- and lower-case letters retain their unique

identities between conforming implementations. In the

case of a portable path name, the slash character may

also be used. X/Open ISO.1

portability. The ability of a programming language to

compile successfully on different operating systems

without requiring changes to the source code.

positional parameter. A parameter that must appear

in a specified location relative to other positional

parameters. IBM

precedence. The priority system for grouping different

types of operators with their operands.

predefined macros. Frequently used routines

provided by an application or language for the

programmer.

preinitialization. A process by which an environment

or library is initialized once and can then be used

repeatedly to avoid the inefficiency of initializing the

environment or library each time it is needed.

prelinker. A utility provided with Language

Environment that you can use to process application

programs that require DLL support, or contain either

constructed reentrancy or external symbol names that

are longer than 8 characters. You require the prelinker,

or its equivalent function which is provided by the

binder, to process all C++ applications, or C applications

that are compiled with the RENT, DLL, LONGNAME or

IPA options. The prelinker is superseded by the binder.

See also binder.

preprocessor. A phase of the compiler that examines

the source program for preprocessor statements that

are then executed, resulting in the alteration of the

source program.

preprocessor statement. In the C and C++

languages, a statement that begins with the symbol #

and is interpreted by the preprocessor during

compilation. IBM

primary expression. (1) An identifier, parenthesized

expression, function call, array element specification,

structure member specification, or union member

specification. IBM (2) Literals, names, and names

qualified by the :: (scope resolution) operator.

printable character. One of the characters included in

the print character classification of the LC_CTYPE

category in the current locale. X/Open

private. Pertaining to a class member that is only

accessible to member functions and friends of that

class.

privilege. See file access permissions.

process. (1) An instance of an executing application

and the resources it uses. (2) An address space and

single thread of control that executes within that

address space, and its required system resources. A

process is created by another process issuing the

fork() function. The process that issues the fork()

function is known as the parent process, and the new

process created by the fork() function is known as the

child process. X/Open ISO.1

process group. A collection of processes that permits

the signaling of related processes. Each process in the

system is a member of a process group that is identified

by the process group ID. A newly created process joins

the process group of its creator. IBM X/Open ISO.1

process group ID. The unique identifier representing

a process group during its lifetime. A process group ID

is a positive integer. (Under ISO only, it is a positive

integer that can be contained in a pid_t.) A process

group ID will not be reused by the system until the

process group lifetime ends. X/Open ISO.1

process group lifetime. A period of time that begins

when a process group is created and ends when the

last remaining process in the group leaves the group,

because either it is the end of the last process’ lifetime

or the last remaining process is calling the setsid() or

setpgid() functions. X/Open ISO.1

process ID. The unique identifier representing a

process. A process ID is a positive integer. (Under ISO

only, it is a positive integer that can be contained in a

pid_t.) A process ID will not be reused by the system

until the process lifetime ends. In addition, if there exists

a process group whose process group ID is equal to

that process ID, the process ID will not be reused by

the system until the process group lifetime ends. A

process that is not a system process will not have a

process ID of 1. X/Open ISO.1

process lifetime. The period of time that begins when

a process is created and ends when the process ID is

returned to the system. After a process is created with a

fork() function, it is considered active. Its thread of

control and address space exist until it terminates. It

then enters an inactive state where certain resources

may be returned to the system, although some

resources, such as the process ID, are still in use.

When another process executes a wait() or waitpid()

function for an inactive process, the remaining

resources are returned to the system. The last resource

to be returned to the system is the process ID. At this

time, the lifetime of the process ends. X/Open ISO.1

program object. All or part of a computer program in

a from suitable for loading into main storage for

execution. A program object is the output of the Binder

and is a newer more flexible format (e.g. longer external

names) than a load module.

152 XL C/C++ for z/VM: User's Guide

protected. Pertaining to a class member that is only

accessible to member functions and friends of that

class, or to member functions and friends of classes

derived from that class.

prototype. A function declaration or definition that

includes both the return type of the function and the

types of its parameters. See function prototype.

public. Pertaining to a class member that is accessible

to all functions.

pure virtual function. A virtual function that has a

function definition of = 0;. See also abstract classes.

Q

qualified class name. Any class name or class name

qualified with one or more :: (scope resolution)

operators.

qualified name. Used to qualify a non-class type

name such as a member by its class name.

qualified type name. Used to reduce complex class

name syntax by using typedefs to represent qualified

class names.

Query Management Facility (QMF™). Pertaining to an

IBM query and report writing facility that enables a

variety of tasks such as data entry, query building,

administration, and report analysis. IBM

queue. A sequence with restricted access in which

elements can only be added at the back end (or bottom)

and removed from the front end (or top). A queue is

characterized by first-in, first-out behavior and

chronological order.

quotation marks. The characters ″ and ’, also known

as double-quote and single-quote respectively. X/Open

R

radix character. The character that separates the

integer part of a number from the fractional part.

X/Open

real group ID. The attribute of a process that, at the

time of process creating, identifies the group of the user

who created the process. This value is subject to

change during the process lifetime, as describe in

setgid(). X/Open ISO.1

real user ID. The attribute of a process that, at the

time of process creation, identifies the user who created

the process. This value is subject to change during the

process lifetime, as described in setuid(). X/Open

ISO.1

reason code. A code that identifies the reason for a

detected error. IBM

reassociation. An optimization technique that

rearranges the sequence of calculations in a subscript

expression producing more candidates for common

expression elimination.

redirection. In the shell, a method of associating files

with the input or output of commands. X/Open

reentrant. The attribute of a program or routine that

allows the same copy of a program or routine to be

used concurrently by two or more tasks.

reference class. A class that links a concrete class to

an abstract class. Reference classes make

polymorphism possible with the Collection Classes.

Synonymous with indirection class.

refresh. To ensure that the information on the user’s

terminal screen is up-to-date. X/Open

register storage class specifier. A specifier that

indicates to the compiler within a block scope data

definition, or a parameter declaration, that the object

being described will be heavily used.

register variable. A variable defined with the register

storage class specifier. Register variables have

automatic storage.

regular expression. (1) A mechanism to select

specific strings from a set of character strings. (2) A set

of characters, meta-characters, and operators that

define a string or group of strings in a search pattern.

(3) A string containing wildcard characters and

operations that define a set of one or more possible

strings.

regular file. A file that is a randomly accessible

sequence of bytes, with no further structure imposed by

the system. X/Open ISO.1

relation. An unordered flat collection class that uses

keys, allows for duplicate elements, and has element

equality.

relative path name. The name of a directory or file

expressed as a sequence of directories followed by a

file name, beginning from the current directory. See path

name resolution. IBM

reserved word. (1) In programming languages, a

keyword that may not be used as an identifier.

ISO/JTC1 (2) A word used in a source program to

describe an action to be taken by the program or

compiler. It must not appear in the program as a

user-defined name or a system name. IBM

RMODE (residency mode). A program attribute that

refers to where a module is prepared to run. RMODE

can be 24 or ANY. ANY refers to the fact that the

module can be loaded either above or below the 16M

line. RMODE 24 means the module expects to be

loaded below the 16M line.

Glossary 153

root. (1) A node that has no parent. All other nodes of

a tree are descendants of the root. (2) In the AIX®

operating system, the user name for the system user

with the most authority. IBM

RTTI. Use the RTTI option to generate run-time type

identification (RTTI) information for the typeid operator

and the dynamic_cast operator.

run-time library. A compiled collection of functions

whose members can be referred to by an application

program during run-time execution. Typically used to

refer to a dynamic library that is provided in object code,

such that references to the library are resolved during

the linking step. The run-time library itself is not

statically bound into the application modules.

S

S-name. An external name in an object module

produced by compiling with the NOLONGNAME option.

Such a name is up to 8 characters long and single

case.

saved set-group-ID. An attribute of a process that

allows some flexibility in the assignment of the effective

group ID attribute, as described in the exec() family of

functions and setgid(). X/Open ISO.1

saved set-user-ID. An attribute of a process that

allows some flexibility in the assignment of the effective

user ID attribute, as described in exec() and setuid().

X/Open ISO.1

scalar. An arithmetic object, or a pointer to an object

of any type.

scope. (1) That part of a source program in which a

variable is visible. (2) That part of a source program in

which an object is defined and recognized.

scope operator (::). An operator that defines the

scope for the argument on the right. If the left argument

is blank, the scope is global; if the left argument is a

class name, the scope is within that class. Synonymous

with scope resolution operator.

scope resolution operator (::). Synonym for scope

operator.

semaphore. An object used by multi-threaded

applications for signalling purposes and for controlling

access to serially reusable resources. Processes can be

locked to a resource with semaphores if the processes

follow certain programming conventions.

sequence. A sequentially ordered flat collection.

sequential concatenation. Multiple sequential data

sets or partitioned data-set members are treated as one

long sequential data set. In the case of sequential data

sets, you can access or update the data sets in order.

In the case of partitioned data-set members, you can

access or update the members in order. Repositioning

is possible if all of the data sets in the concatenation

support repositioning.

sequential data set. A data set whose records are

organized on the basis of their successive physical

positions, such as on magnetic tape. IBM

session. A collection of process groups established for

job control purposes. Each process group is a member

of a session. A process is a member of the session of

which its process group is a member. A newly created

process joins the session of its creator. A process can

alter its session membership; see setsid(). There can

be multiple process groups in the same session.

X/Open ISO.1

shell. A program that interprets sequences of text

input as commands. It may operate on an input stream

or it may interactively prompt and read commands from

a terminal. X/Open

 This feature is provided as part of the z/VM

OpenExtensions Shell and Utilities feature licensed

program.

Short name. An external non-C++ name in an object

module produced by compiling with the NOLONGNAME

option. Such a name is up to 8 characters long and

single case.

signal. (1) A condition that may or may not be

reported during program execution. For example, SIGFPE

is the signal used to represent erroneous arithmetic

operations such as a division by zero. (2) A mechanism

by which a process may be notified of, or affected by,

an event occurring in the system. Examples of such

events include hardware exceptions and specific actions

by processes. The term signal is also used to refer to

the event itself. X/Open ISO.1 (3) A method of

interprocess communication that simulates software

interrupts. IBM

signal handler. A function to be called when the signal

is reported.

single-byte character set (SBCS). A set of characters

in which each character is represented by a one-byte

code. IBM

single-precision. Pertaining to the use of one

computer word to represent a number in accordance

with the required precision. ISO/JTC1 ANSI/ISO

single-quote. The character ’, also known as

apostrophe. This character is named <quotation-mark>

in the portable character set.

slash. The character /, also known as solidus. This

character is named <slash> in the portable character

set.

socket. (1) A unique host identifier created by the

concatenation of a port identifier with a transmission

154 XL C/C++ for z/VM: User's Guide

control protocol/Internet protocol (TCP/IP) address. (2) A

port identifier. (3) A 16-bit port-identifier. (4) A port on a

specific host; a communications end point that is

accessible though a protocol family’s addressing

mechanism. A socket is identified by a socket address.

IBM

sorted map. A sorted flat collection with key and

element equality.

sorted relation. A sorted flat collection that uses keys,

has element equality, and allows duplicate elements.

sorted set. A sorted flat collection with element

equality.

source file. A file that contains source statements for

such items as high-level language programs and data

description specifications. IBM

source module. A file that contains source statements

for such items as high-level language programs and

data description specifications. IBM

source program. A set of instructions written in a

programming language that must be translated to

machine language before the program can be run. IBM

space character. The character defined in the

portable character set as <space>. The space character

is a member of the space character class of the current

locale, but represents the single character, and not all of

the possible members of the class. X/Open

spanned record. A logical record contained in more

than one block. IBM

specialization. A user-supplied definition which

replaces a corresponding template instantiation.

specifiers. Used in declarations to indicate storage

class, fundamental data type and other properties of the

object or function being declared.

spill area. A storage area used to save the contents of

registers. IBM

SQL (Structured Query Language). A language

designed to create, access, update and free data

tables.

square brackets. The characters [(left bracket) and]

(right bracket). Also see brackets.

stack frame. The physical representation of the

activation of a routine. The stack frame is allocated and

freed on a LIFO (last in, first out) basis. A stack is a

collection of one or more stack segments consisting of

an initial stack segment and zero or more increments.

stack storage. Synonym for automatic storage.

standard error. An output stream usually intended to

be used for diagnostic messages. X/Open

standard input. (1) An input stream usually intended

to be used for primary data input. X/Open (2) The

primary source of data entered into a command.

Standard input comes from the keyboard unless

redirection or piping is used, in which case standard

input can be from a file or the output from another

command. IBM

standard output. (1) An output stream usually

intended to be used for primary data output. X/Open (2)

The primary destination of data coming from a

command. Standard output goes to the display unless

redirection or piping is used, in which case standard

output can go to a file or to another command. IBM

statement. An instruction that ends with the character

; (semicolon) or several instructions that are surrounded

by the characters { and }.

static. A keyword used for defining the scope and

linkage of variables and functions. For internal variables,

the variable has block scope and retains its value

between function calls. For external values, the variable

has file scope and retains its value within the source

file. For class variables, the variable is shared by all

objects of the class and retains its value within the

entire program.

static binding. The act of resolving references to

external variables and functions before Run-Time.

storage class specifier. One of the terms used to

specify a storage class, such as auto, register, static, or

extern.

stream. (1) A continuous stream of data elements

being transmitted, or intended for transmission, in

character or binary-digit form, using a defined format.

(2) A file access object that allows access to an ordered

sequence of characters, as described by the ISO C

standard. Such objects can be created by the fdopen()

or fopen() functions, and are associated with a file

descriptor. A stream provides the additional services of

user-selectable buffering and formatted input and

output. X/Open

string. A contiguous sequence of bytes terminated by

and including the first null byte. X/Open

string constant. Zero or more characters enclosed in

double quotation marks.

string literal. Zero or more characters enclosed in

double quotation marks.

striped data set. A special data set organization that

spreads a data set over a specified number of volumes

so that I/O parallelism can be exploited. Record n in a

striped data set is found on a volume separate from the

volume containing record n - p, where n > p.

struct. An aggregate of elements having arbitrary

types.

Glossary 155

structure. A construct (a class data type) that contains

an ordered group of data objects. Unlike an array, the

data objects within a structure can have varied data

types. A structure can be used in all places a class is

used. The initial projection is public.

structure tag. The identifier that names a structure

data type.

Structured Query Language. See SQL.

stub routine. A routine, within a run-time library, that

contains the minimum lines of code required to locate a

given routine at Run-Time.

subscript. One or more expressions, each enclosed in

brackets, that follow an array name. A subscript refers

to an element in an array.

subsystem. A secondary or subordinate system,

usually capable of operating independently of or

asynchronously with, a controlling system. ISO Draft

subtree. A tree structure created by arbitrarily denoting

a node to be the root node in a tree. A subtree is

always part of a whole tree.

superset. Given two sets A and B, A is a superset of B

if and only if all elements of B are also elements of A.

That is, A is a superset of B if B is a subset of A.

support. In system development, to provide the

necessary resources for the correct operation of a

functional unit. IBM

switch expression. The controlling expression of a

switch statement.

switch statement. A C or C++ language statement

that causes control to be transferred to one of several

statements depending on the value of an expression.

system default. A default value defined in the system

profile. IBM

system process. (1) An implementation-dependent

object, other than a process executing an application,

that has a process ID. X/Open (2) An object, other than

a process executing an application, that is defined by

the system, and has a process ID. ISO.1

T

tab character. A character that in the output stream

indicates that printing or displaying should start at the

next horizontal tabulation position on the current line.

The tab is the character designated by ’\t’ in the C

language. If the current position is at or past the last

defined horizontal tabulation position, the behavior is

unspecified. It is unspecified whether the character is

the exact sequence transmitted to an output device by

the system to accomplish the tabulation. X/Open

This character is named <tab> in the portable character

set.

task. (1) In a multiprogramming or multiprocessing

environment, one or more sequences of instructions

treated by a control program as an element of work to

be accomplished by a computer. ISO/JTC1 ANSI/ISO

(2) A routine that is used to simulate the operation of

programs. Tasks are said to be nonpreemptive because

only a single task is executing at any one time. Tasks

are said to be lightweight because less time and space

are required to create a task than a true operating

system process.

task library. A class library that provides the facilities

to write programs that are made up of tasks.

template. A family of classes or functions with variable

types.

template class. A class instance generated by a class

template.

template function. A function generated by a function

template.

template instantiation. The act of creating a new

definition of a function, class, or member of a class from

a template declaration and one or more template

arguments.

terminals. Synonym for leaves.

text file. A file that contains characters organized into

one or more lines. The lines must not contain NUL

characters and none can exceed {LINE_MAX}--which is

defined in limits.h--bytes in length, including the

new-line character. The term text file does not prevent

the inclusion of control or other unprintable characters

(other than NUL). X/Open

thread. The smallest unit of operation to be performed

within a process. IBM

throw expression. An argument to the C++ exception

being thrown.

tilde. The character ~. This character is named <tilde>

in the portable character set.

token. The smallest independent unit of meaning of a

program as defined either by a parser or a lexical

analyzer. A token can contain data, a language

keyword, an identifier, or other parts of language syntax.

IBM

traceback. A section of a dump that provides

information about the stack frame, the program unit

address, the entry point of the routine, the statement

number, and the status of the routines on the call-chain

at the time the traceback was produced.

156 XL C/C++ for z/VM: User's Guide

trap. An unprogrammed conditional jump to a specified

address that is automatically activated by hardware. A

recording is made of the location from which the jump

occurred. ISO/JTC1

trigraph sequence. An alternative spelling of some

characters to allow the implementation of C in character

sets that do not provide a sufficient number of

non-alphabetic graphics. ANSI/ISO

 Before preprocessing, each trigraph sequence in a

string or literal is replaced by the single character that it

represents.

truncate. To shorten a value to a specified length.

try block. A block in which a known C++ exception is

passed to a handler.

type. The description of the data and the operations

that can be performed on or by the data. See also data

type.

type conversion. Synonym for boundary alignment.

type definition. A definition of a name for a data type.

IBM

type specifier. Used to indicate the data type of an

object or function being declared.

U

ultimate consumer. The target of data in an I/O

operation. An ultimate consumer can be a file, a device,

or an array of bytes in memory.

ultimate producer. The source of data in an I/O

operation. An ultimate producer can be a file, a device,

or an array of byes in memory.

unary expression. An expression that contains one

operand. IBM

undefined behavior. Action by the compiler and

library when the program uses erroneous constructs or

contains erroneous data. Permissible undefined

behavior includes ignoring the situation completely with

unpredictable results. It also includes behaving in a

documented manner that is characteristic of the

environment, during translation or program execution,

with or without issuing a diagnostic message. It can also

include terminating a translation or execution, while

issuing a diagnostic message. Contrast with unspecified

behavior and implementation-defined behavior.

underflow. (1) A condition that occurs when the result

of an operation is less than the smallest possible

nonzero number. (2) Synonym for arithmetic underflow,

monadic operation. IBM

union. (1) In the C or C++ language, a variable that

can hold any one of several data types, but only one

data type at a time. IBM (2) For bags, there is an

additional rule for duplicates: If bag P contains an

element m times and bag Q contains the same element

n times, then the union of P and Q contains that

element m+n times.

union tag. The identifier that names a union data type.

unnamed pipe. A pipe that is accessible only by the

process that created the pipe and its child processes.

An unnamed pipe does not have to be opened before it

can be used. It is a temporary file that lasts only until

the last file descriptor that uses it is closed.

unique collection. A collection in which the value of

an element only occurs once; that is, there are no

duplicate elements.

unrecoverable error. An error for which recovery is

impossible without use of recovery techniques external

to the computer program or run.

unspecified behavior. Action by the compiler and

library when the program uses correct constructs or

data, for which the standards impose no specific

requirements. Such action should not cause compiler or

application failure. You should not, however, write any

programs to rely on such behavior as they may not be

portable to other systems. Contrast with

implementation-defined behavior and undefined

behavior.

user-defined data type. (1) A mathematical model

that includes a structure for storing data and operations

that can be performed on that data. Common abstract

data types include sets, trees, and heaps. (2) See also

abstract data type.

user ID. A nonnegative integer that is used to identify

a system user. (Under ISO only, a nonnegative integer,

which can be contained in an object of type uid_t.)

When the identity of a user is associated with a

process, a user ID value is referred to as a real user ID,

an effective user ID, or (under ISO only, and there

optionally) a saved set-user ID. X/Open ISO.1

user name. A string that is used to identify a user.

ISO.1

V

value numbering. An optimization technique that

involves local constant propagation, local expression

elimination, and folding several instructions into a single

instruction.

variable. In programming languages, a language

object that may take different values, one at a time. The

values of a variable are usually restricted to a certain

data type. ISO/JTC1

Glossary 157

variant character. A character whose hexadecimal

value differs between different character sets. On

EBCDIC systems, such as S/390, these 13 characters

are an exception to the portability of the portable

character set.

 <left-square-bracket> [

 <right-square-bracket>]

 <left-brace> {

 <right-brace> }

 <backslash> \

 <circumflex> ¬

 <tilde> ~

 <exclamation-mark> !

 <number-sign> #

 <vertical-line> |

 <grave-accent> `

 <dollar-sign> $

 <commercial-at> @

vertical-tab character. A character that in the output

stream indicates that printing should start at the next

vertical tabulation position. The vertical-tab is the

character designated by ’\v’ in the C or C++ languages.

If the current position is at or past the last defined

vertical tabulation position, the behavior is unspecified.

It is unspecified whether this character is the exact

sequence transmitted to an output device by the system

to accomplish the tabulation. X/Open This character is

named <vertical-tab> in the portable character set.

virtual address space. In virtual storage systems, the

virtual storage assigned to a batched or terminal job, a

system task, or a task initiated by a command.

virtual function. A function of a class that is declared

with the keyword virtual. The implementation that is

executed when you make a call to a virtual function

depends on the type of the object for which it is called,

which is determined at Run-Time.

Virtual Storage Access Method (VSAM). An access

method for direct or sequential processing of fixed and

variable length records on direct access devices. The

records in a VSAM data set or file can be organized in

logical sequence by a key field (key sequence), in the

physical sequence in which they are written on the data

set or file (entry-sequence), or by relative-record

number.

visible. Visibility of identifiers is based on scoping

rules and is independent of access.

volatile attribute. (1) In the C or C++ language, the

keyword volatile, used in a definition, declaration, or

cast. It causes the compiler to place the value of the

data object in storage and to reload this value at each

reference to the data object. IBM (2) An attribute of a

data object that indicates the object is changeable. Any

expression referring to a volatile object is evaluated

immediately (for example, assignments).

W

while statement. A looping statement that contains

the keyword while followed by an expression in

parentheses (the condition) and a statement (the

action). IBM

white space. (1) Space characters, tab characters,

form-feed characters, and new-line characters. (2) A

sequence of one or more characters that belong to the

space character class as defined via the LC_CTYPE

category in the current locale. In the POSIX locale,

white space consists of one or more blank characters

(space and tab characters), new-line characters,

carriage-return characters, form-feed characters, and

vertical-tab characters. X/Open

wide-character. A character whose range of values

can represent distinct codes for all members of the

largest extended character set specified among the

supporting locales.

wide-character code. An integral value corresponding

to a single graphic symbol or control code. X/Open

wide-character string. A contiguous sequence of

wide-character codes terminated by and including the

first null wide-character code. X/Open

wide-oriented stream. See orientation of a stream.

word. A character string considered as a unit for a

given purpose. In s/390, a word is 32 bits or 4 bytes.

working directory. Synonym for current working

directory.

writable static area. See WSA.

write. (1) To output characters to a file, such as

standard output or standard error. Unless otherwise

stated, standard output is the default output destination

for all uses of the term write. X/Open (2) To make a

permanent or transient recording of data in a storage

device or on a data medium. ISO/JTC1 ANSI/ISO

WSA (writable static area). An area of memory in the

program that is modifyable during program execution.

Typically, this area contains global variables and

function and variable descriptors for DLLs.

X

XPLINK (Extra Performance Linkage). A new call

linkage between functions that has the potential for a

significant performance increase when used in an

environment of frequent calls between small functions.

XPLINK makes subroutine calls more efficient by

removing nonessential instructions from the main path.

When all functions are compiled with the XPLINK

option, pointers can be used without restriction, which

makes it easier to port new applications to z/VM CMS.

158 XL C/C++ for z/VM: User's Guide

Bibliography

IBM XL C/C++ for z/VM

Publications

v XL C/C++ for z/VM: User’s Guide, SC09-7625

v XL C/C++ for z/VM: Runtime Library Reference,

SC09-7624

z/OS XL C/C++ Publications

v z/OS: XL C/C++ Compiler and Run-Time

Migration Guide for the Application

Programmer, GC09-4913

v z/OS: XL C/C++ Language Reference,

SC09-4815

v z/OS: XL C/C++ Messages, GC09-4819

v z/OS: XL C/C++ Programming Guide,

SC09-4765

v z/OS: XL C/C++ User’s Guide, SC09-4767

Other IBM C/C++ Publications

v IBM C/C++ Legacy Class Libraries Reference,

SC09-7652

v IBM Standard C/C++ Library Reference,

SC09-4949

IBM Debug Tool

v Debug Tool User’s Guide and Reference,

SC09-2137

z/VM Publications

This bibliography lists the publications in the z/VM

product library. It also lists publications for some

associated IBM software products and hardware

features. For abstracts of the publications in the

z/VM library, see z/VM: General Information.

Where to Get z/VM Information

z/VM product information is available from the

following sources:

v z/VM V5.4 Information Center at

publib.boulder.ibm.com/infocenter/zvm/v5r4/
index.jsp

v z/VM Internet Library at www.ibm.com/eserver/
zseries/zvm/library/

v IBM Publications Center at

www.elink.ibmlink.ibm.com/publications/servlet/
pbi.wss

v IBM Online Library: z/VM Collection (CD-ROM),

SK2T-2067

v IBM Online Library: z/VM Collection on DVD,

SK5T-7054

z/VM Base Library

Overview

v z/VM: General Information, GC24-6095

v z/VM: Glossary, GC24-6097

v z/VM: License Information, GC24-6102

Installation, Migration, and Service

v z/VM: Guide for Automated Installation and

Service, GC24-6099

v z/VM: Migration Guide, GC24-6103

v z/VM: Service Guide, GC24-6117

v z/VM Summary for Automated Installation and

Service (DVD Installation), GA76-0406

v z/VM Summary for Automated Installation and

Service (Tape Installation), GA76-0407

v z/VM: VMSES/E Introduction and Reference,

GC24-6130

Planning and Administration

v z/VM: CMS File Pool Planning, Administration,

and Operation, SC24-6074

v z/VM: CMS Planning and Administration,

SC24-6078

v z/VM: Connectivity, SC24-6080

v z/VM: CP Planning and Administration,

SC24-6083

v z/VM: Getting Started with Linux on System z,

SC24-6096

v z/VM: Group Control System, SC24-6098

v z/VM: I/O Configuration, SC24-6100

v z/VM: Running Guest Operating Systems,

SC24-6115

v z/VM: Saved Segments Planning and

Administration, SC24-6116

v z/VM: Secure Configuration Guide, SC24-6158

v z/VM: TCP/IP LDAP Administration Guide,

SC24-6140

v z/VM: TCP/IP Planning and Customization,

SC24-6125

v z/OS and z/VM: Hardware Configuration

Manager User’s Guide, SC33-7989

© Copyright IBM Corp. 2003, 2008 159

http://publib.boulder.ibm.com/infocenter/zvm/v5r4/index.jsp
http://publib.boulder.ibm.com/infocenter/zvm/v5r4/index.jsp
http://www.ibm.com/eserver/zseries/zvm/library/
http://www.ibm.com/eserver/zseries/zvm/library/
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss

Customization and Tuning

v z/VM: CP Exit Customization, SC24-6082

v z/VM: Performance, SC24-6109

Operation and Use

v z/VM: CMS Commands and Utilities Reference,

SC24-6073

v z/VM: CMS Pipelines Reference, SC24-6076

v z/VM: CMS Pipelines User’s Guide, SC24-6077

v z/VM: CMS Primer, SC24-6137

v z/VM: CMS User’s Guide, SC24-6079

v z/VM: CP Commands and Utilities Reference,

SC24-6081

v z/VM: System Operation, SC24-6121

v z/VM: TCP/IP User’s Guide, SC24-6127

v z/VM: Virtual Machine Operation, SC24-6128

v z/VM: XEDIT Commands and Macros

Reference, SC24-6131

v z/VM: XEDIT User’s Guide, SC24-6132

v CMS/TSO Pipelines: Author’s Edition,

SL26-0018

Application Programming

v z/VM: CMS Application Development Guide,

SC24-6069

v z/VM: CMS Application Development Guide for

Assembler, SC24-6070

v z/VM: CMS Application Multitasking, SC24-6071

v z/VM: CMS Callable Services Reference,

SC24-6072

v z/VM: CMS Macros and Functions Reference,

SC24-6075

v z/VM: CP Programming Services, SC24-6084

v z/VM: CPI Communications User’s Guide,

SC24-6085

v z/VM: Enterprise Systems Architecture/
Extended Configuration Principles of Operation,

SC24-6094

v z/VM: Language Environment User’s Guide,

SC24-6101

v z/VM: OpenExtensions Advanced Application

Programming Tools, SC24-6104

v z/VM: OpenExtensions Callable Services

Reference, SC24-6105

v z/VM: OpenExtensions Commands Reference,

SC24-6106

v z/VM: OpenExtensions POSIX Conformance

Document, GC24-6107

v z/VM: OpenExtensions User’s Guide,

SC24-6108

v z/VM: Program Management Binder for CMS,

SC24-6110

v z/VM: Reusable Server Kernel Programmer’s

Guide and Reference, SC24-6112

v z/VM: REXX/VM Reference, SC24-6113

v z/VM: REXX/VM User’s Guide, SC24-6114

v z/VM: Systems Management Application

Programming, SC24-6122

v z/VM: TCP/IP Programmer’s Reference,

SC24-6126

v Common Programming Interface

Communications Reference, SC26-4399

v Common Programming Interface Resource

Recovery Reference, SC31-6821

v z/OS: IBM Tivoli Directory Server Plug-in

Reference for z/OS, SA76-0148

v z/OS: Language Environment Concepts Guide,

SA22-7567

v z/OS: Language Environment Debugging

Guide, GA22-7560

v z/OS: Language Environment Programming

Guide, SA22-7561

v z/OS: Language Environment Programming

Reference, SA22-7562

v z/OS: Language Environment Run-Time

Messages, SA22-7566

v z/OS: Language Environment Writing ILC

Applications, SA22-7563

v z/OS MVS Program Management: Advanced

Facilities, SA22-7644

v z/OS MVS Program Management: User’s Guide

and Reference, SA22-7643

Diagnosis

v z/VM: CMS and REXX/VM Messages and

Codes, GC24-6118

v z/VM: CP Messages and Codes, GC24-6119

v z/VM: Diagnosis Guide, GC24-6092

v z/VM: Dump Viewing Facility, GC24-6093

v z/VM: Other Components Messages and

Codes, GC24-6120

v z/VM: TCP/IP Diagnosis Guide, GC24-6123

v z/VM: TCP/IP Messages and Codes,

GC24-6124

v z/VM: VM Dump Tool, GC24-6129

v z/OS and z/VM: Hardware Configuration

Definition Messages, SC33-7986

160 XL C/C++ for z/VM: User's Guide

Publications for z/VM Optional

Features

Data Facility Storage Management

Subsystem for VM

v z/VM: DFSMS/VM Customization, SC24-6086

v z/VM: DFSMS/VM Diagnosis Guide,

GC24-6087

v z/VM: DFSMS/VM Messages and Codes,

GC24-6088

v z/VM: DFSMS/VM Planning Guide, SC24-6089

v z/VM: DFSMS/VM Removable Media Services,

SC24-6090

v z/VM: DFSMS/VM Storage Administration,

SC24-6091

Directory Maintenance Facility for z/VM

v z/VM: Directory Maintenance Facility

Commands Reference, SC24-6133

v z/VM: Directory Maintenance Facility Messages,

GC24-6134

v z/VM: Directory Maintenance Facility Tailoring

and Administration Guide, SC24-6135

Performance Toolkit for VM™

v z/VM: Performance Toolkit Guide, SC24-6156

v z/VM: Performance Toolkit Reference,

SC24-6157

RACF® Security Server for z/VM

v z/VM: RACF Security Server Auditor’s Guide,

SC24-6143

v z/VM: RACF Security Server Command

Language Reference, SC24-6144

v z/VM: RACF Security Server Diagnosis Guide,

GC24-6145

v z/VM: RACF Security Server General User’s

Guide, SC24-6146

v z/VM: RACF Security Server Macros and

Interfaces, SC24-6147

v z/VM: RACF Security Server Messages and

Codes, GC24-6148

v z/VM: RACF Security Server Security

Administrator’s Guide, SC24-6142

v z/VM: RACF Security Server System

Programmer’s Guide, SC24-6149

v z/VM: Security Server RACROUTE Macro

Reference, SC24-6150

Remote Spooling Communications

Subsystem Networking for z/VM

v z/VM: RSCS Networking Diagnosis, GC24-6151

v z/VM: RSCS Networking Exit Customization,

SC24-6152

v z/VM: RSCS Networking Messages and Codes,

GC24-6153

v z/VM: RSCS Networking Operation and Use,

SC24-6154

v z/VM: RSCS Networking Planning and

Configuration, SC24-6155

Publications for Associated IBM

Software Products and Hardware

Features

Device Support Facilities

v Device Support Facilities: User’s Guide and

Reference, GC35-0033

Environmental Record Editing and

Printing Program

v EREP: User’s Guide, GC35-0151

Network Job Entry

v Network Job Entry: Formats and Protocols,

SA22-7539

Open Systems Adapter

v eServer zSeries 900: Planning for the Open

Systems Adapter-2 Feature, GA22-7477

v System z10, System z9 and eServer zSeries:

Open Systems Adapter-Express Customer’s

Guide and Reference, SA22-7935

v System z9 and eServer zSeries 890 and 990:

Open Systems Adapter-Express Integrated

Console Controller User’s Guide, SA22-7990

Bibliography 161

162 XL C/C++ for z/VM: User's Guide

Index

A
absolute file names 52

ar utility
creating archive libraries 110

maintaining program objects 109

ARCHITECTURE compiler option 24

archive libraries
ar utility 109

creating 110

displaying the object files in 110

file naming convention for c89/cxx use 109

assembler
generation of C structures 99

B
BFS files

definition xi

BFS input files, compiler 45

binder, interface to c89/cxx utility 73

BITF0XL DSECT utility option 92

BLKSIZE DSECT utility option 99

C
C++ compiler listing 36

C370LIB
directory 77

EXEC
FILENAME option 78

syntax of 77

c89/cxx utility 73

CC EXEC
error messages returned by 115

specifying BFS input file 45

specifying CMS input file 44

specifying compiler options 46

syntax 44

CCNnnnn messages 113

CCNUTLnnnx messages 115

CDSECT EXEC 91

CEEBINT HLL user exit, using to set emsg 67

CEEUOPT CSECT, creating 74

CEEXOPT macro 74

CLASSNAME filter utility option 88

CMOD EXEC
examples 61

options 59

CMS files
definition xi

CMS input files, compiler 44

code set conversion utilities
genxlt 104

usage 103

iconv 103

usage 103

command line parameter string 67

COMMENT DSECT utility option 93

compiler
C compiler listing 35

c89/cxx utility interface to 69

error messages 113

input 44

output 48

return codes 113

compiler options
#pragma options 22

defaults 23

not supported 23

operational differences
ARCHITECTURE 24

CSECT/NOCSECT 24

DEBUG/NODEBUG 25

ENUMSIZE 27

EVENTS/NOEVENTS 27

INLPRT/NOINLPRT 28

LIST/NOLIST 28

LSEARCH/NOLSEARCH 29

OBJECT/NOOBJECT 31

OPTFILE/NOOPTFILE 32

PPONLY/NOPPONLY 33

SEARCH/NOSEARCH 34

SOURCE/NOSOURCE 35

overriding defaults 22

compiling and binding using c89/cxx 70

compiling and binding using make 71

constructed reentrancy 65

conventions
default names in XL C/C++ xi

syntax diagrams xii

CSECT (control section)
CEEUOPT 74

compiler option 24

CSECT compiler option 24

CXXFILT EXEC 87

CLASSNAME option 88

error messages 119

REGULARNAME option 88

running under VM/CMS 89

SIDEBYSIDE option 88

SPECIALNAME option 89

SYMMAP option 88

unknown type of name 89

using 87

WIDTH option 88

D
DCSS (discontiguous saved segment) 43

ddname
definition xi

include files 51

DEBUG compiler option 25

default, overriding compiler options 22

DEFSUB DSECT utility option 94

© Copyright IBM Corp. 2003, 2008 163

disk search sequence
include files 54

LSEARCH compiler option 29

SEARCH compiler option 34

DSECT utility 92

BITF0XL option 92

BLKSIZE option 99

COMMENT option 93

DEFSUB option 94

EQUATE option 94

error messages 119

HDRSKIP option 96

INDENT option 97

LOCALE option 97

LOWERCASE option 97

LRECL option 99

OPTFILE option 97

OUTPUT option 98

PPCOND option 98

RECFM option 99

SECT option 92

SEQUENCE option 98

structure produced 99

UNNAMED option 98

E
emsg messages 67

ENUMSIZE compiler option 27

EQUATE DSECT utility option 94

error messages
compiler 113

DSECT utility 119

EXEC 115

filter utility (CXXFILT) 119

genxlt utility 119

iconv utility 119

localedef utility 119

Object Library Utility 119

redirecting 49

runtime 117

EVENTS compiler option 27

Events file 48, 123

examples
machine-readable 5

naming of 5

softcopy 5

EXEC
C370LIB 77

CC 44

CDSECT 91

CMOD 58

CXXFILT 87

error messages 115

GENXLT 104

ICONV 103

LOCALDEF 106

supplied by IBM 111

executable
files

placing CMS load modules in the BFS 74

executable (continued)
files (continued)

running CMS modules from the shell 75

running, from the shell 75

modules, creating 58

F
feature test macro 39

FILEDEF
definition xi

filename
definition xi

files
executable 58, 75

names
absolute 52

include files 50

filter utility (CXXFILT)
CLASSNAME option 88

error messages 119

REGULARNAME option 88

running under VM/CMS 89

SIDEBYSIDE option 88

SPECIALNAME option 89

SYMMAP option 88

unknown type of name 89

using 87

WIDTH option 88

functions
code set conversion 103

G
GENMOD command 62

GENXLT EXEC 104

genxlt utility 104

error messages 119

usage 103

GLOBAL command 43

H
HDRSKIP DSECT utility option 96

I
IBM-supplied EXECs 111

ICONV EXEC 103

iconv utility
error messages 119

usage 103

include files
naming 50

preprocessor directive 49

record format 50

system files and libraries
SEARCH compiler option 34

searching for 54

using 49

164 XL C/C++ for z/VM: User's Guide

include files (continued)
user files and libraries

LSEARCH compiler option 29

searching for 54

using 49

INDENT DSECT utility option 97

INLRPT compiler option 28

input
compiler 44

source files 47

L
library

archive
creating 110

displaying the object files in 110

file naming convention for c89/cxx use 109

searching for objects by c89/cxx 109

availability at run time 66

Language Environment
compiler 43

components 57

runtime 43

making available to the compiler 43

search sequence
for include files 54

with LSEARCH compiler option 29

with SEARCH compiler option 34

LINKLOAD EXEC
options 79

LIST compiler option 28

LKED command 64

LOAD command 62

load module, creating 58

LOCALDEF EXEC 106

LOCALE DSECT utility option 97

localedef utility
error messages 106, 119

LOWERCASE DSECT utility option 97

LRECL DSECT utility option 99

LSEARCH compiler option 29

M
macros, feature test 39

maintaining objects in an archive library 109

maintaining programs through makefiles 110

maintaining programs with make using c89/cxx 71

make utility
compiling and binding application programs 71

creating makefiles 110

maintaining C/C++ application programs 110

makefiles
creating 110

maintaining application programs 110

mangled name filter utility 87

math considerations 58

messages
compiler, list of 113

returned by XL C/C++ EXECs 115

messages (continued)
runtime 117

migration considerations 1

N
naming, object library members 78

natural reentrancy 65

NOCSECT compiler option 24

NODEBUG compiler option 25

NOEVENTS compiler option 27

NOINLRPT compiler option 28

NOLIST compiler option 28

NOLSEARCH compiler option 29

NOOBJECT compiler option 31

NOOPTFILE compiler option 32

NOPPONLY compiler option 33

NOSEARCH compiler option 34

NOSOURCE compiler option 35

nucleus extension
compiler location 43

program installation in 65

NUCXLOAD command 65

O
object

code 43

compiler option 31

library 77

adding object modules 77

deleting object modules 77

example 78

listing the contents 78

OBJECT compiler option 31

Object Library Utility
long name support 77

map 80

messages 119

OpenExtensions
binding using c89/cxx 73

compiling and binding using c89/cxx 70

compiling and binding using make 71

maintaining objects in an archive library 109

maintaining programs through makefiles 110

placing CMS load modules in the BFS 74

running 74

specifying runtime options for 74

OPTFILE compiler option 32

OPTFILE DSECT utility option 97

output
compiler 48

OUTPUT DSECT utility option 98

P
passing arguments 41

PATHDEF
definition xi

perror messages 117

Index 165

POSIX
function call from non-POSIX function 4

making use of 4

PPCOND DSECT utility option 98

PPONLY compiler option 33

Preprocessor output 48

primary input
specifying to the compiler 44

program module
definition xii

R
RECFM DSECT utility option 99

redirecting error messages 49

reentrancy 65

REGULARNAME filter utility option 88

return codes
compiler 113

DSECT utility 119

genxlt utility 119

iconv utility 119

localdef utility 119

Object Library Utility 119

run time
error messages 117

return codes 117

running programs
from the shell 75

OpenExtensions application 75

VM/CMS
example 66, 67

with the START command 66

S
sample program

C source 7

C++ source 11

C++ template source 16

SEARCH compiler option 34

search sequence
include files 54

library files 66

SECT DSECT utility option 92

SEQUENCE DSECT utility option 98

shared programs 65

shell
compiling and binding within

using the c89/cxx utility 69

invoking load modules 75

running programs 75

SIDEBYSIDE filter utility option 88

SOURCE compiler option 35

SPECIALNAME filter utility option 89

START command 66

stub routine
in Language Environment 57

SYMMAP filter utility option 88

syntax diagrams
how to read xii

T
template program example 16

trademarks 129

TXTLIB
command 77

creating 77

U
UNNAMED DSECT utility option 98

user
comments, object library utility map 84

include files
LSEARCH compiler option 29

searching for 54

specifying with #include directive 50

utilities
OpenExtensions 109

XL C/C++ 77

V
VM/CMS

compiling 43

executable
module 62

program 62

GENMOD command 63

LOAD command 62

messages 67

running a program 66

W
WIDTH filter utility option 88

writable static 65

166 XL C/C++ for z/VM: User's Guide

Readers’ Comments — We’d Like to Hear from You

XL C/C++ for z/VM

User's Guide

version 1 release 2

 Publication No. SC09-7625-01

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,

organization, subject matter, or completeness of this book. The comments you send should pertain to only the

information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your IBM

business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use the

personal information that you supply to contact you about the issues that you state on this form.

Comments:

 Thank you for your support.

Submit your comments using one of these channels:

v Send your comments to the address on the reverse side of this form.

v Send your comments via e-mail to: mhvrcfs@us.ibm.com

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
 SC09-7625-01

SC09-7625-01

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

MHVRCFS, Mail Station P181

2455 South Road

Poughkeepsie, New York

 12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5654-A22

Printed in USA

SC09-7625-01

	Contents
	Figures
	Tables
	About This Document
	Intended Audience
	Conventions and Terminology
	How to Read Syntax Diagrams
	Where to Find More Information
	How to Send Your Comments to IBM

	Summary of Changes
	SC09-7625-01, IBM XL C/C++ for z/VM, Version 1 Release 2
	IBM XL C/C++ for z/VM
	Language Environment for z/VM Upgrade
	Program Management Binder for CMS Upgrade

	Chapter 1. About IBM XL C/C++ for z/VM
	Migration Considerations
	Differences between IBM XL C/C++ for z/VM and z/OS XL C/C++
	The C Language
	The C++ Language
	Common Features of the C and C++ Compilers
	Class Library
	Utilities
	Language Environment
	z/VM OpenExtensions
	OpenExtensions Services
	Applications with OpenExtensions Services
	Applications with OpenExtensions Interoperability

	Softcopy Examples

	Chapter 2. C Example
	Example of a C Program
	CCNUAAM
	CCNUAAN

	Compiling, Binding, and Running the C Example
	Non-XPLINK and XPLINK under CMS
	Non-XPLINK and XPLINK under the OpenExtensions Shell

	Chapter 3. C++ Examples
	Example of a C++ Program
	CCNUBRH
	CCNUBRC

	Compiling, Binding, and Running the C++ Example
	Non-XPLINK and XPLINK under CMS
	Non-XPLINK and XPLINK under the OpenExtensions Shell

	Example of a C++ Template Program
	CCNUTMP

	Compiling, Binding, and Running the C++ Template Example
	Under CMS
	Under the OpenExtensions Shell

	Chapter 4. Compiler Options
	Specifying Compiler Options
	Specifying Compiler Options Using #pragma options

	Compiler Option Defaults
	Summary of Compiler Options
	Descriptions of Compiler Options
	Compiler Options Not Supported
	Compiler Options with Operational Differences
	ARCHITECTURE
	CSECT | NOCSECT
	DEBUG | NODEBUG
	ENUMSIZE
	EVENTS | NOEVENTS
	INLRPT | NOINLRPT
	LIST | NOLIST
	LSEARCH | NOLSEARCH
	OBJECT | NOOBJECT
	OPTFILE | NOOPTFILE
	PPONLY | NOPPONLY
	SEARCH | NOSEARCH
	SOURCE | NOSOURCE

	Using the C Compiler Listing
	Using the C++ Compiler Listing

	Chapter 5. Compiler Options under OpenExtensions
	Specifying Compiler Options Using c89/cxx
	c89/cxx Default Compiler Settings
	c89 Selectable Compiler Settings
	Format
	Description

	Feature Test Macros

	Chapter 6. Runtime Options
	Specifying Runtime Options
	Runtime Options Using Language Environment

	Chapter 7. Compiling a C/C++ Program
	Invoking the XL C/C++ Compiler
	GLOBAL Command for Using the Language Environment Library
	Syntax of the CC EXEC
	Specifying the Input File
	CMS Record Files
	BFS Files

	Specifying Compiler Options
	CMS Record File Examples
	BFS File Example

	Creating Input Source Files
	Specifying Output Files
	Valid Input/Output File Types
	Using Include Files
	Specifying #include File Names

	Determining If filename Is In Absolute Form
	Using LSEARCH and SEARCH

	Search Sequences for Include Files
	With the NOOE option in effect
	With the OE option in effect

	Chapter 8. Binding and Running a C/C++ Program
	Library Routine Considerations
	Creating an Executable Program
	Language Environment Sidedeck Files and TXTLIBs
	CMOD Options
	Examples

	Using the LOAD and GENMOD Commands
	Using the BIND Command
	Using the LKED Command
	Using FILEDEF to Define Input and Output Files
	Preparing a Reentrant Program
	Linking Modules for Interlanguage Calls
	Running a Program
	Making the Runtime Libraries Available for Execution
	Making the Language Environment Library Available for VM/CMS
	Search Sequence for Library Files

	Specifying Runtime Options
	Message Handling

	Chapter 9. Compiling a C/C++ Program under OpenExtensions
	Compiling with c89/cxx
	Compiler Selection

	Compiling and Building in One Step with c89/cxx
	Using the make Utility

	Chapter 10. Binding and Running a C/C++ Program under OpenExtensions
	Using the c89 Utility to Bind and Create Executable Files
	c89 Binder Options
	Binder Options

	Specifying Runtime Options under OpenExtensions
	Running under OpenExtensions
	OpenExtensions Application Program Environments
	Placing a CMS Application Program Load Module in the File System
	Running a CMS Module from the OpenExtensions Shell
	Running an OpenExtensions XL C/C++ Application Executable File from the OpenExtensions Shell
	Issuing the Executable Filename from the Shell
	Issuing a Setup Shell Script Filename from the Shell

	Chapter 11. Object Library Utility
	Creating an Object Library under VM/CMS
	LINKLOAD EXEC

	Object Library Utility Map

	Chapter 12. Filter Utility
	CXXFILT Options
	SYMMAP | NOSYMMAP
	SIDEBYSIDE | NOSIDEBYSIDE
	WIDTH(width) | NOWIDTH
	REGULARNAME | NOREGULARNAME
	CLASSNAME | NOCLASSNAME
	SPECIALNAME | NOSPECIALNAME
	Unknown Type of Name

	Running CXXFILT under VM/CMS

	Chapter 13. DSECT Conversion Utility
	DSECT Utility Options
	SECT
	BITF0XL | NOBITF0XL
	COMMENT | NOCOMMENT
	DEFSUB | NODEFSUB
	EQUATE | NOEQUATE
	HDRSKIP | NOHDRSKIP
	INDENT | NOINDENT
	LOCALE | NOLOCALE
	LOWERCASE | NOLOWERCASE
	OPTFILE | NOOPTFILE
	PPCOND | NOPPCOND
	SEQUENCE | NOSEQUENCE
	UNNAMED | NOUNNAMED
	OUTPUT
	RECFM
	LRECL
	BLKSIZE

	Generation of C Structures

	Chapter 14. Code Set and Locale Utilities
	Code Set Conversion Utilities
	iconv Utility
	genxlt Utility

	localedef Utility

	Chapter 15. OpenExtensions ar and make Utlities
	OpenExtensions Archive Libraries
	Creating Archive Libraries
	Creating Makefiles

	Appendix A. IBM-Supplied EXECs
	Appendix B. XL C/C++ Compiler Return Codes and Messages
	Appendix C. EXEC Error Messages
	Appendix D. Runtime Error Messages and Return Codes
	perror Messages
	XL C/C++ Runtime Return Codes

	Appendix E. Utility Messages
	DSECT Utility Messages
	Return Codes
	Messages

	Appendix F. Layout of the Events File
	FILEID Field
	FILEEND Field
	ERROR Field

	Notices
	Programming Interface Information
	Trademarks

	Glossary
	Bibliography
	IBM XL C/C++ for z/VM Publications
	z/OS XL C/C++ Publications
	Other IBM C/C++ Publications
	IBM Debug Tool
	z/VM Publications
	Where to Get z/VM Information
	z/VM Base Library
	Overview
	Installation, Migration, and Service
	Planning and Administration
	Customization and Tuning
	Operation and Use
	Application Programming
	Diagnosis

	Publications for z/VM Optional Features
	Data Facility Storage Management Subsystem for VM
	Directory Maintenance Facility for z/VM
	Performance Toolkit for VM™
	RACF® Security Server for z/VM
	Remote Spooling Communications Subsystem Networking for z/VM

	Publications for Associated IBM Software Products and Hardware Features
	Device Support Facilities
	Environmental Record Editing and Printing Program
	Network Job Entry
	Open Systems Adapter

	Index
	Readers’ Comments — We'd Like to Hear from You

